banner
Home

Thermal Cycling Test Chamber

Thermal Cycling Test Chamber

  • Multi-touch Panel Testing Multi-touch Panel Testing
    Oct 28, 2024
    Multi-touch Panel Testing When the human body is close to the touchpad, the capacitance value between the sensing pad and the ground will change (general pf level). Capacitive touch pad (also known as: Surface capacitive) is through the use of the sensor detected by the change of capacitance value by calculating microprocessor, filtering interference and finally determining whether there is a human body close to achieve the key function. Compared with the traditional mechanical keys, the advantage is that there is no mechanical damage, and non-metals such as glass, acrylic, plastic can be used as the operating panel isolation, making the appearance of the product more atmospheric. In contrast, it can also realize the sliding operation that is difficult to achieve with traditional mechanical keys, so that the human-machine interface is more in line with the intuitive operation of people. The outermost layer of the capacitive touch panel is a thin silicon dioxide hardening processing layer, and its hardness reaches 7; The second layer is ITO(conductive coating), through the conductive layer on the front of the average distribution of low-voltage conduction current, to establish a uniform electric field on the glass surface, when the finger touches the surface of the touch panel, it will absorb a small amount of current from the contact point, resulting in a voltage drop of the corner electrode, the use of sensing the weak current of the human body to achieve the purpose of touch; The function of the bottom layer of ITO is to shield electromagnetic waves, so that the touch panel can work in a good environment without interference. While the projective capacitive, which is the touch mode used by the famous Apple iPhone and Windows 7, has the feature of supporting multi-touch, which can shorten the user's learning time, just use the finger belly touch panel to avoid the use of stylus, and has higher light transmission and more power saving, more scratch resistance than resistive type (hardness up to 7H or more), greatly increase the service life without correction... Touch technology can be divided into four kinds according to the principle of sensing, including resistive, capacitive, surface acoustic wave and optics. And capacitive can also be divided into surface capacitive and projected capacitive two kinds. Touch technology applications: Industrial applications (automatic processing machines, measuring instruments, centralized monitoring and control) Commercial applications (ticketing systems, POS, ATMs, vending machines, stored value machines) Life applications (cell phones, satellite positioning GPS, UMPC, small laptop) Education and entertainment (e-books, portable game consoles, jukeboxes, electronic dictionaries) Comparison of touch panel light transmission rate: resistive (85%), capacitive (93%) Multi-touch panel test conditions: Operating temperature range: -20℃~70℃/20%~85%RH Storage temperature range: -50℃~85℃/10%~90%RH High temperature test: 70℃/240, 500 hours, 80℃/240, 1000 hours, 85℃/1000 hours, 100℃/240 hours Low temperature test: -20℃/240 hours, -40℃/240, 500 hours, -40℃/1000 hours High temperature and high humidity test: 60℃/90%RH/240hours, 60℃/95%RH/1000hours 70℃/80%RH/500hours, 70℃/90%RH/240,500,1000hours, 70℃/95%RH/500hours 85℃/85%RH/1000hours, 85℃/90%RH/1000hours Boiling test: 100℃/100%RH/100 minutes Temperature shock - high and low temperature: (Temperature shock test is not equivalent to temperature cycling test ) -30℃←→80℃, 500cycles -40℃(30min)←→70(30min)℃, 10cycles -40℃←→70℃, 50, 100cycles -40℃(30min)←→110℃(30min), 100cycles -40℃(30min)←→80℃(30min), 10, 100cycles -40℃(30min)←→90℃(30min), 100cycles Thermal Shock Test - Liquid Type: -40℃←→90℃, 2cycles Cold and thermal shock test-over room temperature: -30℃(30min)→R.T. (5min)→80℃(30min), 20cycles Service life: 1,000,000 times, 2,000,000 times, 35,000,000 times, 225,000,000 times, 300,000,000 times Hardness test: greater than hardness level 7 (ASTM D 3363, JIS 5400) Impact Test: With more than 5kg of force, strike the panel on the most vulnerable area and the center of the panel respectively. Pin(Tail) Pulling Test: 5 or 10kg downward pulling. Pin Folding Test:135¢angle, left and right back and forth for 10 times. Impact resistance test: 11φ/5.5g copper ball dropped at 1.8m height on the center surface of 1m object, 3ψ/9g stainless steel ball dropped at 30cm height. Writing durability: 100,000 characters or more (width R0.8mm, pressure 250g) Touch durability: 1,000,000, 10,000,000, 160,000,000, 200,000,000 times or more (width R8 mm, hardness 60°, pressure 250g, 2 times per second) Test equipment: Test equipment Test Requirements and Conditions   Temperature & humidity test chamber Equipment features: high-strength, high-reliability structural design - to ensure the high reliability of the equipment; working room materials for the SUS304 stainless steel - corrosion resistance, strong anti-fatigue thermal function, long service life; high-density polyurethane foam insulation materials - to ensure that the heat loss is reduced to a little; the surface of the plastic spraying treatment - to ensure that the equipment's lasting corrosion-resistant function and the appearance of the life; high-strength temperature-resistant Silicone rubber sealing strip - to ensure the high sealing of the equipment door.  High temperature & high humidity test chamber High temperature and high humidity test chamber series, passed the CE certification, offer 34L, 64L, 100L, 180L, 340L, 600L, 1000L, 1500L and other volume models to meet the needs of different customers. In design, they use environment-friendly refrigerant and high-performance refrigeration system, parts and components are used in the international famous brand.  Two-Zone(Basket Type) Thermal shock test chamber Applicable to the assessment of products (the whole machine),  parts and components, etc. to withstand rapid changes in temperature. Thermal shock test chambers can understand the impact of the test sample once or repeatedly due to temperature changes. The main parameters affecting the temperature change test are the high and low temperature values of the temperature change range, the retention time of the sample at high and low temperature, and the number of test cycles.  Three-zone (Ventilation Type) Thermal shock test chamber TS series thermal shock test chambers have complete equipment specifications - two-zone(basket type), three-zone (ventilation type) and horizontal movement type are available for users to choose, fully meeting the various requirements of different users; The equipment can also provide standard high and low temperature test function to achieve the compatibility of temperature shock and high and low temperature test; high strength, high reliability of the structure design - ensure the high reliability of the equipment.      
    Read More
  • IEC 61646 Test Standard for Thin-film Solar Photoelectric Modules IEC 61646 Test Standard for Thin-film Solar Photoelectric Modules
    Oct 07, 2024
    IEC 61646 Test Standard for Thin-film Solar Photoelectric Modules Through the diagnostic measurement, electrical measurement, irradiation test, environmental test, mechanical test five types of test and inspection mode, confirm the design confirmation and form approval requirements of thin film solar energy, and confirm that the module can operate in the general climate environment required by the specification for a long time. IEC 61646-10.1 Visual inspection procedure Objective: To check for any visual defects in the module. Performance at STC under IEC 61646-10.2 Standard test conditions Objective: Using natural light or A class simulator, under standard test conditions (battery temperature: 25±2℃, irradiance: 1000wm^-2, standard solar spectrum irradiation distribution in accordance with IEC891), test the electrical performance of the module with load change. IEC 61646-10.3 Insulation test Objective: To test whether there is good insulation between the current carrying parts and the frame of the module IEC 61646-10.4 Measurement of temperature coefficients Objective: To test the current temperature coefficient and voltage temperature coefficient in the module test. The temperature coefficient measured is valid only for the irradiation used in the test. For linear modules, it is valid within ±30% of this irradiation. This procedure is in addition to IEC891, which specifies the measurement of these coefficients from individual cells in a representative batch. The temperature coefficient of the thin-film solar cell module depends on the heat treatment process of the module involved. When the temperature coefficient is involved, the conditions of the thermal test and the irradiation results of the process should be indicated. IEC 61646-10.5 Measurement of nominal operating cell temperature (NOCT) Objective: To test the NOCT of the module IEC 61646-10.6 Performance at NOCT Objective: When the nominal operating battery temperature and irradiance are 800Wm^-2, under the standard solar spectrum irradiance distribution condition, the electrical performance of the module varies with the load. IEC 61646-10.7 Performance at low irradiance Objective: To determine the electrical performance of modules under load under natural light or A class A simulator at 25℃ and 200Wm^-2(measured with appropriate reference cell). IEC 61646-10.8 Outdoor exposure Testing Objective: To make an unknown assessment of the resistance of the module to exposure to outdoor conditions and to show any effects of degradation that could not be detected by the experiment or test. IEC 61646-10.9 Hot spot test Objective: To determine the ability of the module to withstand thermal effects, such as packaging material aging, battery cracking, internal connection failure, local shading or stained edges can cause such defects. IEC 61646-10.10 UV test (UV test) Objective: To confirm the ability of the module to withstand ultraviolet (UV) radiation, the new UV test is described in IEC1345, and if necessary, the module should be exposed to light before performing this test. IEC61646-10.11 Thermal cycling Test (Thermal cycling) Objective: To confirm the ability of the module to resist thermal inhomogeneity, fatigue and other stresses due to repeated temperature changes. The module should be annealed before receiving this test. [Pre-I-V test] refers to the test after annealing, be careful not to expose the module to light before the final I-V test. Test requirements: a. Instruments to monitor the electrical continuity within each module throughout the test process b. Monitor the insulation integrity between one of the recessed ends of each module and the frame or support frame c. Record module temperature throughout the test and monitor any open circuit or ground failure that may occur (no intermittent open circuit or ground failure during the test). d.The insulation resistance shall meet the same requirements as the initial measurement IEC 61646-10.12 Humidity freeze cycle test Purpose: To test the module's resistance to the influence of the subsequent sub-zero temperature under high temperature and humidity, this is not a thermal shock test, before receiving the test, the module should be annealed and subjected to a thermal cycle test, [[Pre-I-V test] refers to the thermal cycle after the test, be careful not to expose the module to light before the final I-V test. Test requirements: a. Instruments to monitor the electrical continuity within each module throughout the test process b. Monitor the insulation integrity between one of the recessed ends of each module and the frame or support frame c. Record module temperature throughout the test and monitor any open circuit or ground failure that may occur (no intermittent open circuit or ground failure during the test). d. The insulation resistance shall meet the same requirements as the initial measurement IEC 61646-10.13 Damp heat Test (Damp heat) Objective: To test the ability of the module to resist long-term infiltration of moisture Test requirements: The insulation resistance shall meet the same requirements as the initial measurement IEC 61646-10.14 Robustness of terminations Objective: To determine whether the attachment between the lead end and the lead end to the module body can withstand the force during normal installation and operation. IEC 61646-10.15 Twist Test Objective: To detect possible problems caused by module installation on an imperfect structure IEC 61646-10.16 Mechanical load test Purpose: The purpose of this test is to determine the ability of the module to withstand wind, snow, ice, or static loads IEC 61646-10.17 Hail test Objective: To verify the impact resistance of the module to hail IEC 61646-10.18 Light soaking Test Objective: To stabilize the electrical properties of thin film modules by simulating solar irradiation IEC 61646-10.19 Annealing Tests (Annealing) Objective: The film module is annealed before the verification test. If not annealed, the heating during the subsequent test procedure may mask the attenuation caused by other causes. IEC 61646-10.20 Wet leakage current Test Purpose: To evaluate the insulation of the module under wet operating conditions and to verify that moisture from rain, fog, dew or melting snow does not enter the live parts of the module circuit, which may cause corrosion, ground failure or safety hazards.
    Read More

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

contact us