banner
Home

Thermal Cycling Chamber

Thermal Cycling Chamber

  • Temperature and Humidity Terms Temperature and Humidity Terms
    Oct 14, 2024
    Temperature and Humidity Terms Dew Point temperature Td, in the air water vapor content unchanged, maintain a certain pressure, so that the air cooling to reach saturation temperature called dew point temperature, referred to as dew point, the unit is expressed in ° C or ℉. It's actually the temperature at which water vapor and water are in equilibrium. The difference between the actual temperature (t) and the dew point temperature (Td) indicates how far the air is saturated. When t>Td, it means that the air is not saturated, when t=Td, it is saturated, and when t<Td, it is supersaturated. dew is the liquid water in the air that condenses on the ground. In the evening or at night, due to the radiation cooling of the ground or ground objects, the air layer close to the surface will also cool down. When the temperature drops below the dew point, that is, when the water vapor content in the air is susaturated, there will be condensation of water vapor on the surface of the ground or ground objects. If the dew point temperature is above 0 ° C at this time, tiny water droplets appear on the ground or ground objects, which are called dew. frost refers to the white ice crystals formed on the ground or objects after the air close to the ground is cooled to the frost point (meaning the dew point is below 0) under the influence of radiation cooling on the ground. fog refers to the condensation of water vapor suspended in the atmosphere near the Earth's surface, composed of small water droplets or ice crystals. When the temperature reaches the dew point temperature (or is close to the dew point), the water vapor in the air condenses to form fog. snow is solid water in the form of snowflakes that falls to the ground from mixed clouds. Precipitation consisting of a large number of white opaque ice crystals (snow crystals) and their polymers (snow masses). Snow is the natural phenomenon of water condensing and falling in the air, or falling snow; There is a limit to the amount of water vapor that can be contained in a unit volume of air under a certain pressure and a certain temperature. If the water vapor contained in the volume of air exceeds this limit, the water vapor will condense and produce precipitation, and the actual value of water vapor in the volume of air. In terms of absolute humidity. The more water vapor there is, the higher the absolute humidity of the air. Relative Humidity refers to the percentage of water vapor pressure in the air and saturated water vapor pressure at the same temperature, or the ratio of the absolute humidity of wet air to the maximum absolute humidity that can be reached at the same temperature, and can also be expressed as the ratio of the partial pressure of water vapor in wet air to the saturation pressure of water at the same temperature. Humidity: wet and dry bulb measurement The dry and wet bulb thermometer is used to detect the [relative humidity] in the air, the dry bulb temperature is the temperature measured by the general temperature sensor, and the wet bulb temperature is tied on the temperature sensor with a wet cloth, and then soaked in a small cup of water, so that the water is wrapped in the whole sensor, because the relative humidity in the air must be less than or equal to 100% (the water vapor in the air is not saturated). Therefore, the moisture of the wet bulb will be evaporated, and the heat will be taken away during evaporation, resulting in a drop in the wet bulb temperature (the dry bulb temperature is the real air temperature), which means that the greater the difference in the readings of the dry and wet bulb thermometer, the more vigorous the evaporation of water, and the smaller the relative humidity in the air, as long as the temperature of the dry and wet bulb is measured, Then compare [relative humidity table] you can know the relative humidity of the environment at that time.  
    Read More
  • Temperature Cyclic Stress Screening (1) Temperature Cyclic Stress Screening (1)
    Oct 14, 2024
    Temperature Cyclic Stress Screening (1) Environmental Stress Screening (ESS) Stress screening is the use of acceleration techniques and environmental stress under the design strength limit, such as: burn in, temperature cycling, random vibration, power cycle... By accelerating the stress, the potential defects in the product emerge [potential parts material defects, design defects, process defects, process defects], and eliminate electronic or mechanical residual stress, as well as eliminate stray capacitors between multi-layer circuit boards, the early death stage of the product in the bath curve is removed and repaired in advance, so that the product through moderate screening, Save the normal period and decline period of the bathtub curve to avoid the product in the process of use, the test of environmental stress sometimes lead to failure, resulting in unnecessary losses. Although the use of ESS stress screening will increase the cost and time, for improving the product delivery yield and reduce the number of repairs, there is a significant effect, but for the total cost will be reduced. In addition, customer trust will also be improved, generally for electronic parts of the stress screening methods are pre-burning, temperature cycle, high temperature, low temperature, PCB printed circuit board stress screening method is temperature cycle, for the electronic cost of the stress screening is: Power pre-burning, temperature cycling, random vibration, in addition to the stress screen itself is a process stage, rather than a test, screening is 100% of the product procedure. Stress screening applicable product stage: R & D stage, mass production stage, before delivery (screening test can be carried out in components, devices, connectors and other products or the whole machine system, according to different requirements can have different screening stress) Stress screening comparison: a. Constant high temperature pre-burning (Burn in) stress screening, is the current electronic IT industry commonly used method to precipitate electronic components defects, but this method is not suitable for screening parts (PCB, IC, resistor, capacitor), According to statistics, the number of companies in the United States that use temperature cycling to screen parts is five times more than the number of companies that use constant high temperature prefiring to screen components. B. GJB/DZ34 indicates the proportion of temperature cycle and random vibrating screen selection defects, temperature accounted for about 80%, vibration accounted for about 20% of the defects in various products. c. The United States has conducted a survey of 42 enterprises, random vibration stress can screen out 15 to 25% of the defects, while the temperature cycle can screen out 75 to 85%, if the combination of the two can reach 90%. d. The proportion of product defect types detected by temperature cycling: insufficient design margin: 5%, production and workmanship errors: 33%, defective parts: 62% Description of fault induction of temperature cyclic stress screening: The cause of product failure induced by temperature cycling is: when the temperature is cycled within the upper and lower extremal temperatures, the product produces alternating expansion and contraction, resulting in thermal stress and strain in the product. If there is a transient thermal ladder (temperature non-uniformity) within the product, or the thermal expansion coefficients of adjacent materials within the product do not match each other, these thermal stresses and strains will be more drastic. This stress and strain is greatest at the defect, and this cycle causes the defect to grow so large that it can eventually cause structural failure and generate electrical failure. For example, a cracked electroplated through-hole eventually cracks completely around it, causing an open circuit. Thermal cycling enables soldering and plating through holes on printed circuit boards... Temperature cyclic stress screening is especially suitable for electronic products with printed circuit board structure. The fault mode triggered by the temperature cycle or the impact on the product is as follows: a. The expansion of various microscopic cracks in the coating, material or wire b. Loosen poorly bonded joints c. Loosen improperly connected or riveted joints d. Relax the pressed fittings with insufficient mechanical tension e. Increase the contact resistance of poor quality solder joints or cause an open circuit f. Particle, chemical pollution g. Seal failure h. Packaging issues, such as bonding of protective coatings i. Short circuit or open circuit of the transformer and coil j. The potentiometer is defective k. Poor connection of welding and welding points l. Cold welding contact m. Multi-layer board due to improper handling of open circuit, short circuit n. Short circuit of power transistor o. Capacitor, transistor bad p. Dual row integrated circuit failure q. A box or cable that is nearly short-circuited due to damage or improper assembly r. Breakage, breakage, scoring of material due to improper handling... Etc. s. out-of-tolerance parts and materials t. resistor ruptured due to lack of synthetic rubber buffer coating u. The transistor hair is involved in the grounding of the metal strip v. Mica insulation gasket rupture, resulting in short circuit transistor w. Improper fixing of the metal plate of the regulating coil leads to irregular output x. The bipolar vacuum tube is open internally at low temperature y. Coil indirect short circuit z. Ungrounded terminals a1. Component parameter drift a2. Components are improperly installed a3. Misused components a4. Seal failure Introduction of stress parameters for temperature cyclic stress screening: The stress parameters of temperature cyclic stress screening mainly include the following: high and low temperature extremum range, dwell time, temperature variability, cycle number High and low temperature extremal range: the larger the range of high and low temperature extremal, the fewer cycles required, the lower the cost, but can not exceed the product can withstand the limit, do not cause new fault principle, the difference between the upper and lower limits of temperature change is not less than 88°C, the typical range of change is -54°C to 55°C. Dwell time: In addition, the dwell time can not be too short, otherwise it is too late to make the product under test produce thermal expansion and contraction stress changes, as for the dwell time, the dwell time of different products is different, you can refer to the relevant specification requirements. Number of cycles: As for the number of cycles of temperature cyclic stress screening, it is also determined by considering product characteristics, complexity, upper and lower limits of temperature and screening rate, and the screening number should not be exceeded, otherwise it will cause unnecessary harm to the product and cannot improve the screening rate. The number of temperature cycles ranges from 1 to 10 cycles [ordinary screening, primary screening] to 20 to 60 cycles [precision screening, secondary screening], for the removal of the most likely workmanship defects, about 6 to 10 cycles can be effectively removed, in addition to the effectiveness of the temperature cycle, Mainly depends on the temperature variation of the product surface, rather than the temperature variation inside the test box. There are seven main influencing parameters of temperature cycle: (1) Temperature Range (2) Number of Cycles (3) Temperature Rate of Chang (4) Dwell Time (5) Airflow Velocities (6) Uniformity of Stress (7) Function test or not (Product Operating Condition)
    Read More
  • IEC-60068-2 Combined Test of Condensation and Temperature and Humidity IEC-60068-2 Combined Test of Condensation and Temperature and Humidity
    Oct 14, 2024
    IEC-60068-2 Combined Test of Condensation and Temperature and Humidity Difference of IEC60068-2 damp heat test specifications In the IEC60068-2 specification, there are a total of five kinds of humid heat tests, in addition to the common 85℃/85%R.H., 40℃/93%R.H. In addition to fixed-point high temperature and high humidity, there are two more special tests [IEC60068-2-30, IEC60068-2-38], these two are alternating wet and humid cycle and temperature and humidity combined cycle, so the test process will change temperature and humidity, and even multiple groups of program links and cycles, applied in IC semiconductors, parts, equipment, etc. To simulate the outdoor condensation phenomenon, evaluate the material's ability to prevent water and gas diffusion, and accelerate the product's tolerance to deterioration, the five specifications were organized into a comparison table of the differences in the wet and heat test specifications, and the test points were explained in detail for the wet and heat combined cycle test, and the test conditions and points of GJB in the wet and heat test were supplemented. IEC60068-2-30 alternating humid heat cycle test This test uses the test technique of maintaining humidity and temperature alternating to make moisture penetrate into the sample and cause condensation (condensation) on the surface of the product to be tested, so as to confirm the adaptability of the component, equipment or other products in use, transportation and storage under the combination of high humidity and temperature and humidity cyclic changes. This specification is also suitable for large test samples. If the equipment and the test process need to keep the power heating components for this test, the effect will be better than IEC60068-2-38, the high temperature used in this test has two (40 ° C, 55 ° C), the 40 ° C is to meet most of the world's high temperature environment, while 55 ° C meets all the world's high temperature environment, the test conditions are also divided into [cycle 1, cycle 2], In terms of severity, [Cycle 1] is higher than [Cycle 2]. Suitable for side products: components, equipment, various types of products to be tested Test environment: the combination of high humidity and temperature cyclic changes produces condensation, and three kinds of environments can be tested [use, storage, transportation ([packaging is optional)] Test stress: Breathing causes water vapor to invade Whether power is available: Yes Not suitable for: parts that are too light and too small Test process and post-test inspection and observation: check the electrical changes after moisture [do not take out the intermediate inspection] Test conditions: Humidity: 95%R.H.[Temperature change after high humidity maintenance](low temperature 25±3℃←→ high temperature 40℃ or 55℃) Rising and cooling rate: heating (0.14℃/min), cooling (0.08 ~ 0.16℃/min) Cycle 1: Where absorption and respiratory effects are important features, the test sample is more complex [humidity not less than 90%R.H.] Cycle 2: In the case of less obvious absorption and respiratory effects, the test sample is simpler [humidity is not less than 80%R.H.] IEC60068-2 damp heat test specification difference comparison table For component type parts products, a combination test method is used to accelerate the confirmation of the test sample's resistance to degradation under high temperature, high humidity and low temperature conditions. This test method is different from the product defects caused by respiration [dew, moisture absorption] of IEC60068-2-30. The severity of this test is higher than that of other humid heat cycle tests, because there are more temperature changes and [respiration] during the test, the cycle temperature range is larger [from 55℃ to 65℃], and the temperature change rate of the temperature cycle is faster [temperature rise: 0.14 ° C /min becomes 0.38 ° C /min, 0.08 ° C /min becomes 1.16 ° C /min], in addition, different from the general humid heat cycle, the low temperature cycle condition of -10 ° C is added to accelerate the breathing rate and make the water condensed in the gap of the substitute freeze, which is the characteristic of this test specification. The test process allows the power test and the applied load power test, but it can not affect the test conditions (temperature and humidity fluctuation, rising and cooling rate) because of the heating of the side product after power. Due to the change of temperature and humidity during the test process, there can not be condensation water droplets on the top of the test chamber to the side product. Suitable for side products: components, metal components sealing, lead end sealing Test environment: combination of high temperature, high humidity and low temperature conditions Test stress: accelerated breathing + frozen water Whether it can be powered on: it can be powered on and external electric load (it can not affect the conditions of the test chamber because of power heating) Not applicable: Can not replace moist heat and alternating humid heat, this test is used to produce defects different from respiration Test process and post-test inspection and observation: check the electrical changes after moisture [check under high humidity conditions and take out after test] Test conditions: damp heat cycle (25 please - 65 + 2 ℃ / 93 + / - 3% R.H.) please - low temperature cycle (25 please - 65 + 2 ℃ / 93 + 3% R.H. - - 10 + 2 ℃) X5cycle = 10 cycle Rising and cooling rate: heating (0.38℃/min), cooling (1.16 ℃/min) Heat and humidity cycle (25←→65±2℃/93±3%R.H.) Low temperature cycle (25←→65±2℃/93±3%R.H. →-10±2℃) GJB150-09 damp heat test Instructions: The wet and heat test of GJB150-09 is to confirm the ability of equipment to withstand the influence of hot and humid atmosphere, suitable for equipment stored and used in hot and humid environments, equipment prone to high humidity, or equipment that may have potential problems related to heat and humidity. Hot and humid locations can occur throughout the year in the tropics, seasonally in mid-latitudes, and in equipment subjected to combined pressure, temperature and humidity changes, with special emphasis on 60 ° C /95%R.H. This high temperature and humidity does not occur in nature, nor does it simulate the dampness and heat effect after solar radiation, but it can find the parts of the equipment with potential problems, but it cannot reproduce the complex temperature and humidity environment, evaluate the long-term effect, and can not reproduce the humidity impact related to the low humidity environment. Relevant equipment for condensation, wet freezing, wet heat combined cycle test: constant temperature and humidity test chamber
    Read More
  • Temperature Cycling Test Temperature Cycling Test
    Oct 12, 2024
    Temperature Cycling Test Temperature Cycling, in order to simulate the temperature conditions encountered by different electronic components in the actual use environment, changing the ambient temperature difference range and rapid rise and fall temperature change can provide a more stringent test environment, but it must be noted that additional effects may be caused to material testing. For the relevant international standard test conditions of temperature cycle test, there are two ways to set the temperature change. Macroshow Technology provides an intuitive setting interface, which is convenient for users to set according to the specification. You can choose the total Ramp time or set the rise and cooling rate with the temperature change rate per minute. List of international specifications for temperature cycling tests: Total Ramp time (min) : JESD22-A104, MIL-STD-8831, CR200315 Temperature variation per minute (℃/min) : IEC 60749, IPC-9701, Bellcore-GR-468, MIL-2164 Example: Lead-free solder joint reliability test Instructions: For the reliability test of lead-free solder joints, different test conditions will also be different in terms of the temperature change setting mode. For example, (JEDEC JESD22-A104) will specify the temperature change time with the total time [10min], while other conditions will specify the temperature change rate with [10℃/ min], such as from 100 ℃ to 0℃. With a temperature change of 10 degrees per minute, that is to say, the total temperature change time is 10 minutes. 100℃ [10min]←→0℃[10min], Ramp: 10℃/ min, 6500cycle -40℃[5min]←→125℃ [5min], Ramp: 10min, 200cycle check once, 2000cycle tensile test [JEDEC JESD22-A104] -40℃(15min)←→125℃(15min), Ramp: 15min, 2000cycle Example: LED Automotive lighting (High Power LED) The temperature cycle test condition of LED car lights is -40 ° C to 100 ° C for 30 minutes, the total temperature change time is 5 minutes, if converted into temperature change rate, it is 28 degrees per minute (28 ° C /min). Test conditions: -40℃(30min)←→100℃(30min), Ramp: 5min  
    Read More
  • Reliability Environmental Test Equipment Combined with Multi-track Temperature Control and Detection Applications Reliability Environmental Test Equipment Combined with Multi-track Temperature Control and Detection Applications
    Oct 12, 2024
    Reliability Environmental Test Equipment Combined with Multi-track Temperature Control and Detection Applications Environmental test equipment includes constant temperature and humidity test chamber, hot and cold shock test chamber, temperature cycle test chamber, no wind oven... These test equipment are all in the simulated environment of temperature, humidity impact on the product, to find out the design, production, storage, transportation, use process may appear product defects, previously only simulated test area air temperature, but in the new international standards and the new test conditions of the international factory, the beginning of the requirements based on the air temperature is not. It is the surface temperature of the test product. In addition, the surface temperature should also be measured and recorded synchronously during the test process for post-test analysis. The relevant environmental test equipment should be combined with surface temperature control and the application of surface temperature measurement is summarized as follows. Constant temperature and humidity test chamber test table temperature detection application: Description: Constant temperature and humidity test chamber in the test process, combined with multi-track temperature detection, high temperature and humidity, condensation (condensation), combined temperature and humidity, slow temperature cycle... During the test process, the sensor is affixed to the surface of the test product, which can be used to measure the surface temperature or internal temperature of the test product. Through this multi-track temperature detection module, the set conditions, actual temperature and humidity, the surface temperature of the test product, and the same measurement and record can be integrated into a synchronous curve file for subsequent storage and analysis. Thermal shock test chamber surface temperature control and detection applications: [dwell time based on surface temperature control], [temperature shock process surface temperature measurement record] Description: The 8-rail temperature sensor is attached to the surface of the test product and applied to the temperature shock process. The dwell time can be counted backward according to the arrival of the surface temperature. During the impact process, the setting conditions, the test temperature, the surface temperature of the test product, and the same measurement and record can be integrated into a synchronous curve. Temperature cycle test chamber surface temperature control and detection application: [Temperature cycle temperature variability and dwell time are controlled according to the test product surface temperature] Description: Temperature cycle test is different from temperature shock test. Temperature shock test uses the maximum energy of the system to carry out temperature changes between high and low temperatures, and its temperature change rate is as high as 30 ~ 40℃ /min. Temperature cycle test requires a process of high and low temperature changes, and its temperature variability can be set and controlled. However, the new specification and the test conditions of international manufacturers have begun to require that the temperature variability refers to the surface temperature of the test product, not the air temperature, and the current temperature cycle specification temperature variability control. According to the test product surface specifications are [JEDEC-22A-104F, IEC60749-25, IPC9701, ISO16750, AEC-Q100, LV124, GMW3172]... In addition, the residence time of high and low temperatures can also be based on the test surface, rather than the air temperature. Temperature cyclic stress screening test chamber surface temperature control and detection applications: Instructions: Temperature cycle stress screening testing machine, combined with multi-rail temperature measurement, in the temperature variability of stress screening, you can choose to use [air temperature] or [test product surface temperature] to control the temperature variability, in addition, in the high and low temperature resident process, the time reciprocal can also be controlled according to the surface of the test product. In accordance with the relevant specifications (GJB1032, IEST) and the requirements of international organizations, according to the definition of GJB1032 in the stress screening residence time and temperature measurement point, 1. The number of thermocouples fixed on the product shall not be less than 3, and the temperature measurement point of the cooling system shall not be less than 6, 2. Ensure that the temperature of 2/3 thermocouples on the product is set at ±10℃, in addition, according to the requirements of IEST(International Association for Environmental Science and Technology), the residence time should reach the temperature stabilization time plus 5min or performance test time. No air oven (natural convection test chamber) surface temperature detection application: Description: Through the combination of a windless oven (natural convection test chamber) and a multi-track temperature detection module, the temperature environment without fan (natural convection) is generated, and the relevant temperature detection test is integrated. This solution can be applied to the actual ambient temperature test of electronic products (such as: Cloud server, 5G, electric vehicle interior, indoor without air conditioning environment, solar inverter, large LCD TV, home Internet sharer, office 3C, laptop, desktop, game console....... Etc.).    
    Read More
  • Purpose of Temperature Shock Test Purpose of Temperature Shock Test
    Oct 11, 2024
    Purpose of Temperature Shock Test Reliability environmental test In addition to high Temperature, low temperature, high temperature and high humidity, temperature and humidity combined cycle, temperature Shock (cold and hot Shock) is also a common test project, temperature shock Testing (Thermal Shock Testing, Temperature Shock Testing, referred to as: TST), the purpose of the temperature shock test is to find out the design and process defects of the product through the severe temperature changes that exceed the natural environment [temperature variability greater than 20℃/min, and even up to 30 ~ 40℃/min], but there is often a situation where the temperature cycle is confused with the temperature shock. "Temperature cycle" means that in the process of high and low temperature change, the temperature change rate is specified and controlled; The temperature change rate of "temperature shock" (hot and cold shock) is not specified (Ramp Time), mainly requires Recovery Time, according to the IEC specification, there are three kinds of temperature cycle test methods [Na, Nb, NC]. Thermal shock is one of the three [Na] test items [rapid temperature change with specified conversion time; medium: air], the main parameters of temperature shock (thermal shock) are: High temperature and low temperature conditions, residence time, return time, number of cycles, in high and low temperature conditions and residence time the current new specification will be based on the surface temperature of the test product, rather than the air temperature in the test area of the test equipment. Thermal shock test chamber: It is used to test the material structure or composite material, in an instant under the continuous environment of extremely high temperature and extremely low temperature, the degree of tolerance, so as to test the chemical changes or physical damage caused by thermal expansion and contraction in the shortest time, the applicable objects include metal, plastic, rubber, electronic.... Such materials can be used as the basis or reference for the improvement of its products. The cold and thermal shock (temperature shock) test process can identify the following product defects: Different expansion coefficient caused by the stripping of the joint Water enters after cracking with different expansion coefficient Accelerated test for corrosion and short circuit caused by water infiltration According to the international standard IEC, the following conditions are common temperature changes: 1. When the equipment is transferred from a warm indoor environment to a cold outdoor environment, or vice versa 2. When the equipment is suddenly cooled by rain or cold water 3. Installed in the outside airborne equipment (such as: automobile, 5G, outdoor monitoring system, solar energy) 4. Under certain transport [car, ship, air] and storage conditions [non-air-conditioned warehouse] Temperature impact can be divided into two types of two-box impact and three-box impact: Instructions: Temperature impact is common [high temperature → low temperature, low temperature → high temperature] way, this way is also called [two-box impact], another so-called [three-box impact], the process is [high temperature → normal temperature → low temperature, low temperature → normal temperature → high temperature], inserted between the high temperature and low temperature, to avoid adding a buffer between the two extreme temperatures. If you look at the specifications and test conditions, there is usually a normal temperature condition, the high and low temperature will be extremely high and very low, in the military specifications and vehicle regulations will see that there is a normal temperature impact condition. IEC temperature shock test conditions: High temperature: 30, 40, 55, 70, 85, 100, 125, 155℃ Low temperature: 5, -5, -10, -25, -40, -55, -65℃ Residence time: 10min, 30min, 1hr, 2hr, 3hr(if not specified, 3hr) Temperature shock residence time description: The Dwell Time of temperature shock in addition to the requirements of the specification, some will depend on the weight of the test product and the surface temperature of the test product The specifications of the thermal shock residence time according to weight are: GJB360A-96-107, MIL-202F-107, EIAJ ED4701/100, JASO-D001... Let's wait. The thermal shock residence time is based on the surface temperature control specifications: MIL-STD-883K, MIL-STD-202H(air above the test object) MIL883K-2016 requirements for [temperature shock] specification: 1. After the air temperature reaches the set value, the surface of the test product needs to arrive within 16 minutes (residence time is not less than 10min). 2. High temperature and low temperature impact are more than the set value, but not more than 10℃. Follow-up action of IEC temperature shock test Reason: The IEC temperature test method is best considered as part of a series of tests, because some failures may not be immediately apparent after the test method is completed. Follow-up test items: IEC60068-2-17 Tightness test IEC60068-2-6 Sinusoidal vibration IEC60068-2-78 Steady Humid heat IEC60068-2-30 Hot and humid temperature cycle Tin whisker (whisker) temperature impact test conditions finishing: 1. - 55 (+ 0 / -) 10 ℃ please - 85 (+ / - 0) 10 ℃, 20 min / 1 cycle (500 cycle check again) 1000 cycles, 1500 cycles, 2000 cycles, 3000 cycles 2. 85(±5)℃←→-40(+5/-15)℃, 20min/1cycle, 500cycles 3.-35±5℃←→125±5℃, dwell for 7min, 500±4cycles 4. - 55 (+ 0 / -) 10 ℃ please - 80 (+ / - 0) 10 ℃, 7 min reside, 20 min / 1 cycle, 1000 cycles Thermal shock testing machine product features: Defrosting frequency: defrosting every 600cycles [Test condition: +150℃ ~ -55℃] Load adjustment function: The system can automatically adjust according to the load of the product to be tested, without manual setting High weight load: Before the equipment leaves the factory, use aluminum IC(7.5Kg) for load simulation to confirm that the equipment can meet the demand Temperature shock Sensor location: The air outlet and return air outlet in the test area can be selected or both can be installed, which conforms to the MIL-STD test specification. In addition to meeting the requirements of the specification, it is also closer to the impact effect of the test product during the test, reducing the test uncertainty and distribution uniformity.
    Read More

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

contact us