Temperature And Humidity Test Chamber

C-80-40

Custom Solution

The humidity test can be conducted at the same time as the temperature test, so that the test effect is closer to the natural climate, simulating a worse natural climate, so that the reliability of the tested sample is higher.

Particularities:

*High-strength, high-reliability structural design - to ensure the high reliability of the equipment;

*The inner chamber material is SUS304 stainless steel - anti-corrosion, strong hot and cold fatigue function, and long service life;

*High density polyurethane foam insulation - ensures minimal heat loss;

*Plastic-sprayed surface – to ensure the lasting anti-corrosion function and appearance life of the equipment;

*High-strength temperature-resistant silicone rubber sealing strip – ensures the high sealing performance of the equipment door;

*A variety of optional functions (test hole, recorder, water purification system, etc.) meets the user's needs for various functions and tests;

*Large-area electric heating anti-frost observation window, built-in lighting - can provide good observation effect;

*Environmentally friendly refrigerants – to ensure that the equipment is more in line with your environmental protection requirements;

Customized constant temperature and humidity test chamber, tell us any function you want and we will make it.

*Triple protection mechanism.

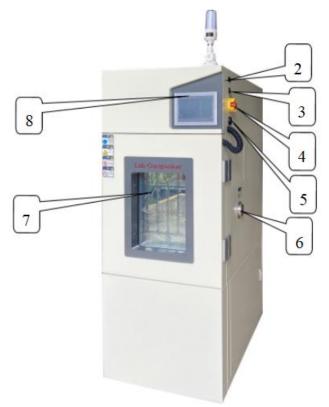
*USB interface and Ethernet communication function enable the communication and software expansion function of the device to meet various needs of customers.

*Adopting internationally popular refrigeration control mode, which can automatically adjust the refrigeration power of the compressor by $0\%\sim100\%$, reducing energy consumption by 30% compared with the traditional heating balance temperature control mode.

Technical Features:

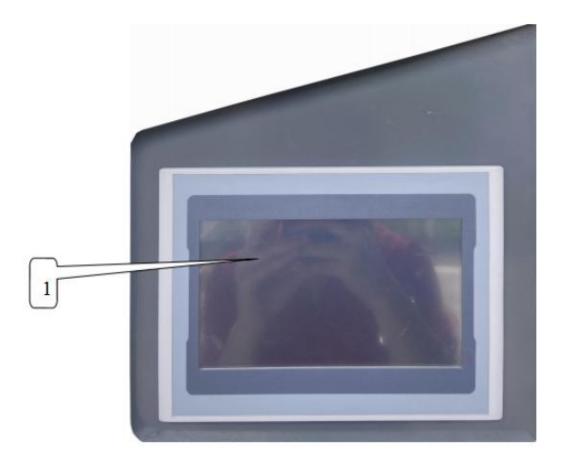
Dimensions (mm)	Width	Height	Depth
Useful	400	500	400
Overall	670	1670	970

Temperature range:


from -40°C to +150°C

Homogeneity and Regulation:

Temperature fluctuation: $\leq \pm 0.5^{\circ}C$ Temperature deviation: $\leq \pm 2.0^{\circ}C$ Temperature uniformity: $\leq 2^{\circ}C$ Temperature rise time: $\geq 3.5^{\circ}C/\min(25^{\circ}C \rightarrow +150^{\circ}C)$ The whole process of nonlinear heating, without load) Temperature drop time: $\geq 1.2^{\circ}C/\min(25^{\circ}C \rightarrow -40^{\circ}C)$ The whole process of nonlinear cooling, without load)


Appearance Introduction and Description:

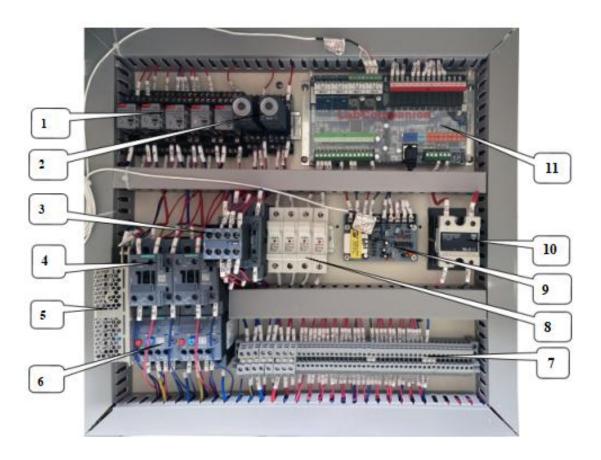
1. Front and side of the machine

Number	Name	Illustration
1	Three color lights	Green running, yellow standby, red fault
2	Over temperature Setting	To Set the upper temperature limit in the test area
3	The USB interface	Used to copy data related to curves or documents.
4	Emergency stop switch	Used to connect the device and cut off power supply
5	Network interface	The computer can be connected to the controller through the network cable for remote operation
6	Test hole	An external power supply can be plugged in from the test hole for live product testing
7	Glass Window	To observe the workings of the inner studio
8	Controller panel	The intelligent operating panel

2. Control panel

Number	Name	Illustration
1	Controller	Touch screen programmable controller

3. Test area


Number	Name	Illustration
1	Thermal resistance sensor	Used for panel overtemperature sensing
2	Thermal resistance sensor	the temperature of the inner chamber Used for the controller to sense the
3	Air outlet	temperature of the inner chamber Test area circulates air outlet
4	Sealant	Heat preservation and air leakage prevention
5	Sample rack track	Used to secure the sample holder
6	Sample holder	Used to place test products

4. The cooling machine room

Number	Name	Illustration
1	Compressor	Compression refrigeration
2	Oil separator	Separate refrigerant and refrigerant oil
3	Pressure protection controller	When the pressure in the pipeline is too high or too low, the controller will alarm
4	Condenser	Cooling refrigerant

5. Power distribution room

Number	Name	Number	Name
1	Intermediate relay	7	Connector terminal
2	Time relay	8	Fuse
3	Auxiliary contact	9	Overheated plate
4	Ac contactor	10	Solid state relay
5	Dc power supply	11	Temperature controller
6	Thermal overload relay		

Test Report:

				1			1
Temperature Sensor °C	-40°C	-20°C	0°C	40°C	85°C	125°C	150°C
1	-40.1	-20.3	0.3	40.2	84.8	125.3	150.2
2	-39.9	-19.9	0.5	40.0	85.1	125.5	149.8
3	-39.7	-19.6	0.7	39.8	85.3	124.9	149.9
4	-39.9	-20.1	0.8	40.1	85.6	124.6	150.0
5	-40.2	-20.4	1.0	40.5	85.8	125.0	150.4
6	-40.4	-20.5	1.3	40.7	86.1	125.2	150.3
7	-40.5	-20.7	1.1	40.9	86.0	125.5	150.5
8	-40.7	-20.9	1.0	40.7	85.9	125.7	150.8
9	-40.5	-21.0	0.8	40.4	85.6	125.9	150.6
Temperature deviation	0.7	1.0	1.3	0.9	1.1	0.9	0.8
Temperature uniformity	1.0	1.4	1.0	1.1	1.3	1.3	1.0