banner
Home

Environment-friendly Test Chamber

Environment-friendly Test Chamber

  • Laptop Test Conditions Laptop Test Conditions
    Oct 16, 2024
    Laptop Test Conditions Notebook computer from the early 12-inch screen evolution to the current LED backlit screen, its computing efficiency and 3D processing, will not be lost to the general desktop computer, and the weight is becoming less and less burden, the relative reliability test requirements for the entire notebook computer is becoming more and more stringent, from the early packaging to the current boot down, the traditional high temperature and high humidity to the current condensation test. From the temperature and humidity range of the general environment to the desert test as a common condition, these are the parts that need to be considered in the production of notebook computer related components and design, the test conditions of the relevant environmental tests collected so far are organized and shared with you. Keyboard tapping test: Test one: GB:1 million times Key pressure :0.3~0.8(N) Button stroke :0.3~1.5(mm) Test 2: Key pressure: 75g(±10g) Test 10 keys for 14 days, 240 times per minute, a total of about 4.83 million times, once every 1 million times Japanese manufacturers :2 to 5 million times Taiwan manufacturer 1: more than 8 million times Taiwan Manufacturer 2:10 million times Power switch and connector plug pull test: This test model simulates the lateral forces that each connector can withstand under abnormal usage. General laptop test items: USB, 1394, PS2, RJ45, Modem, VGA... Equal application force 5kg(50 times), up and down left and right pull and plug. Power switch and connector plug test: 4000 times (Power supply) Screen cover opening and closing test: Taiwanese manufacturers: open and close 20,000 times Japanese manufacturer 1: opening and closing test 85,000 times Japanese manufacturer 2: opening and closing 30,000 times System standby and recovery switch test: General note type: interval 10sec, 1000cycles Japanese manufacturer: System standby and recovery switch test 2000 times Common causes of laptop failure: ☆ Foreign objects fall on the notebook ☆ Falls off the table while in use ☆ Tuck the notebook in a handbag or trolley case ☆ Extremely high temperature or low temperature ☆ Normal use (overuse) ☆ Wrong use in tourist destinations ☆PCMCIA inserted incorrectly ☆ Place foreign objects on the keyboard Shutdown drop test: General notebook type :76 cm GB package drop: 100cm Us Army and Japanese notebook computers: The height of the computer is 90 cm from all sides, sides, corners, a total of 26 sides Platform :74 cm (packing required) Land: 90cm (packing required) TOSHIBA&BENQ 100 cm Boot drop test: Japanese :10 cm boot fall Taiwan :74 cm boot fall Laptop main board temperature shock: Slope 20℃/min Number of cycles 50cycles(no operation during impact) The U.S. military's technical standards and test conditions for laptop procurement are as follows: Impact test: Drop the computer 26 times from all sides, sides and corners at a height of 90 cm Earthquake resistance test :20Hz~1000Hz, 1000Hz~2000Hz frequency once an hour X, Y and Z axis continuous vibration Temperature test :0℃~60℃ 72 hours of aging oven Waterproof test: Spray water on the computer for 10 minutes in all directions, and the water spray rate is 1mm per minute Dust test: Spray the concentration of 60,000 mg/ per cubic meter of dust for 2 seconds (interval of 10 minutes, 10 consecutive times, time 1 hour) Meets MIL-STD-810 military specifications Waterproof test: Us Army notebook :protection class:IP54(dust & rain) Sprayed the computer with water in all directions for 10 minutes at a rate of 1mm per minute. Dust proof test: Us Army notebook: Spray a concentration of 60,000 mg/ m3 of dust for 2 seconds (10 minute intervals, 10 consecutive times, time 1 hour)  
    Read More
  • Temperature and Humidity Terms Temperature and Humidity Terms
    Oct 14, 2024
    Temperature and Humidity Terms Dew Point temperature Td, in the air water vapor content unchanged, maintain a certain pressure, so that the air cooling to reach saturation temperature called dew point temperature, referred to as dew point, the unit is expressed in ° C or ℉. It's actually the temperature at which water vapor and water are in equilibrium. The difference between the actual temperature (t) and the dew point temperature (Td) indicates how far the air is saturated. When t>Td, it means that the air is not saturated, when t=Td, it is saturated, and when t<Td, it is supersaturated. dew is the liquid water in the air that condenses on the ground. In the evening or at night, due to the radiation cooling of the ground or ground objects, the air layer close to the surface will also cool down. When the temperature drops below the dew point, that is, when the water vapor content in the air is susaturated, there will be condensation of water vapor on the surface of the ground or ground objects. If the dew point temperature is above 0 ° C at this time, tiny water droplets appear on the ground or ground objects, which are called dew. frost refers to the white ice crystals formed on the ground or objects after the air close to the ground is cooled to the frost point (meaning the dew point is below 0) under the influence of radiation cooling on the ground. fog refers to the condensation of water vapor suspended in the atmosphere near the Earth's surface, composed of small water droplets or ice crystals. When the temperature reaches the dew point temperature (or is close to the dew point), the water vapor in the air condenses to form fog. snow is solid water in the form of snowflakes that falls to the ground from mixed clouds. Precipitation consisting of a large number of white opaque ice crystals (snow crystals) and their polymers (snow masses). Snow is the natural phenomenon of water condensing and falling in the air, or falling snow; There is a limit to the amount of water vapor that can be contained in a unit volume of air under a certain pressure and a certain temperature. If the water vapor contained in the volume of air exceeds this limit, the water vapor will condense and produce precipitation, and the actual value of water vapor in the volume of air. In terms of absolute humidity. The more water vapor there is, the higher the absolute humidity of the air. Relative Humidity refers to the percentage of water vapor pressure in the air and saturated water vapor pressure at the same temperature, or the ratio of the absolute humidity of wet air to the maximum absolute humidity that can be reached at the same temperature, and can also be expressed as the ratio of the partial pressure of water vapor in wet air to the saturation pressure of water at the same temperature. Humidity: wet and dry bulb measurement The dry and wet bulb thermometer is used to detect the [relative humidity] in the air, the dry bulb temperature is the temperature measured by the general temperature sensor, and the wet bulb temperature is tied on the temperature sensor with a wet cloth, and then soaked in a small cup of water, so that the water is wrapped in the whole sensor, because the relative humidity in the air must be less than or equal to 100% (the water vapor in the air is not saturated). Therefore, the moisture of the wet bulb will be evaporated, and the heat will be taken away during evaporation, resulting in a drop in the wet bulb temperature (the dry bulb temperature is the real air temperature), which means that the greater the difference in the readings of the dry and wet bulb thermometer, the more vigorous the evaporation of water, and the smaller the relative humidity in the air, as long as the temperature of the dry and wet bulb is measured, Then compare [relative humidity table] you can know the relative humidity of the environment at that time.  
    Read More
  • Temperature Cyclic Stress Screening (2) Temperature Cyclic Stress Screening (2)
    Oct 14, 2024
    Temperature Cyclic Stress Screening (2) Introduction of stress parameters for temperature cyclic stress screening: The stress parameters of temperature cyclic stress screening mainly include the following: high and low temperature extremum range, dwell time, temperature variability, cycle number High and low temperature extremal range: the larger the range of high and low temperature extremal, the fewer cycles required, the lower the cost, but can not exceed the product can withstand the limit, do not cause new fault principle, the difference between the upper and lower limits of temperature change is not less than 88°C, the typical range of change is -54°C to 55°C. Dwell time: In addition, the dwell time can not be too short, otherwise it is too late to make the product under test produce thermal expansion and contraction stress changes, as for the dwell time, the dwell time of different products is different, you can refer to the relevant specification requirements. Number of cycles: As for the number of cycles of temperature cyclic stress screening, it is also determined by considering product characteristics, complexity, upper and lower limits of temperature and screening rate, and the screening number should not be exceeded, otherwise it will cause unnecessary harm to the product and cannot improve the screening rate. The number of temperature cycles ranges from 1 to 10 cycles [ordinary screening, primary screening] to 20 to 60 cycles [precision screening, secondary screening], for the removal of the most likely workmanship defects, about 6 to 10 cycles can be effectively removed, in addition to the effectiveness of the temperature cycle, Mainly depends on the temperature variation of the product surface, rather than the temperature variation inside the test box. There are seven main influencing parameters of temperature cycle: (1) Temperature Range (2) Number of Cycles (3) Temperature Rate of Chang (4) Dwell Time (5) Airflow Velocities (6) Uniformity of Stress (7) Function test or not (Product Operating Condition) Stress screening fatigue classification: The general classification of Fatigue research can be divided into High-cycle Fatigue, Low-cycle Fatigue and Fatigue Crack Growth. In the aspect of low cycle Fatigue, it can be subdivided into Thermal Fatigue and Isothermal Fatigue. Stress screening acronyms: ESS: Environmental stress screening FBT: Function board tester ICA: Circuit analyzer ICT: Circuit tester LBS: load board short-circuit tester MTBF: mean time between failures Time of temperature cycles: a.MIL-STD-2164(GJB 1302-90) : In the defect removal test, the number of temperature cycles is 10, 12 times, and in the trouble-free detection it is 10 ~ 20 times or 12 ~ 24 times. In order to remove the most likely workmanship defects, about 6 ~ 10 cycles are needed to effectively remove them. 1 ~ 10 cycles [general screening, primary screening], 20 ~ 60 cycles [precision screening, secondary screening]. B.od-hdbk-344 (GJB/DZ34) Initial screening equipment and unit level uses 10 to 20 loops (usually ≧10), component level uses 20 to 40 loops (usually ≧25). Temperature variability: a.MIL-STD-2164(GJB1032) clearly states: [Temperature change rate of temperature cycle 5℃/min] B.od-hdbk-344 (GJB/DZ34) Component level 15 ° C /min, system 5 ° C /min c. Temperature cyclic stress screening is generally not specified temperature variability, and its commonly used degree variation rate is usually 5°C/min
    Read More
  • VMR- plate Temperature Cycle Transient Break Test VMR- plate Temperature Cycle Transient Break Test
    Oct 11, 2024
    VMR- plate Temperature Cycle Transient Break Test Temperature cycle test is one of the most commonly used methods for reliability and life test of lead-free welding materials and SMD parts. It evaluates the adhesive parts and solder joints on the surface of SMD, and causes plastic deformation and mechanical fatigue of solder joints materials under the fatigue effect of cold and hot temperature cycle with controlled temperature variability, so as to understand the potential hazards and failure factors of solder joints and SMD. The Daisy chain diagram is connected between the parts and the solder joints. The test process detects the on-off and on-off between the lines, parts and solder joints through the high-speed instantaneous break measuring system, which meets the demand for the reliability test of electrical connections to evaluate whether the solder joints, tin balls and parts fail. This test is not really simulated. Its purpose is to apply severe stress and accelerate the aging factor on the object to be tested to confirm whether the product is designed or manufactured correctly, and then evaluate the thermal fatigue life of the component solder joints. The reliability test of the electrical high-speed instantaneous break connection has become a key link to ensure the normal operation of the electronic system and avoid the failure of the electrical connection caused by the failure of the immature system. The resistance changes over a short period of time were observed under accelerated temperature changes and vibration tests. Purpose: 1. Ensure that products designed, manufactured and assembled meet predetermined requirements 2. Relaxation of solder joint creep stress and SMD fracture failure caused by thermal expansion difference 3. The maximum test temperature of the temperature cycle should be 25℃ lower than the Tg temperature of the PCB material, so as to avoid more than one damage mechanism of the substitute test product 4. Temperature variability at 20℃/min is a temperature cycle, and temperature variability above 20℃/min is a temperature shock 5. The welding joint dynamic measurement interval does not exceed 1min 6. The high temperature and low temperature residence time for failure determination needs to be measured in 5 strokes Requirements: 1. The total temperature time of the test product is within the range of the rated maximum temperature and the minimum temperature, and the length of the residence time is very important for the accelerated test, because the residence time is not enough during the accelerated test, which will make the creep process incomplete 2. The resident temperature must be higher than Tmax temperature and lower than Tmin temperature Refer to the list of specifications: IPC-9701, IPC650-2.6.26, IPC-SM-785, IPCD-279, J-STD-001, J-STD-002, J-STD-003, JESD22-A104, JESD22-B111, JESD22-B113, JESD22-B117 , SJR-01
    Read More
  • Reliability Test for Light-emitting Diodes for Communication Reliability Test for Light-emitting Diodes for Communication
    Oct 09, 2024
    Reliability Test for Light-emitting Diodes for Communication Communication light-emitting diode failure determination: Provide a fixed current to compare the optical output power, and determine failure if the error is greater than 10% Mechanical stability test: Impact test: 5tims/axis, 1500G, 0.5ms Vibration test: 20G, 20 ~ 2000Hz, 4min/cycle, 4cycle/axis Liquid thermal shock test: 100℃(15sec)←→0℃(5sec)/5cycle Solder heat resistance: 260℃/10 seconds /1 time Solder adhesion: 250℃/5 seconds Durability test: Accelerated aging test: 85℃/ power (maximum rated power)/5000 hours, 10000 hours High temperature storage: maximum rated storage temperature /2000 hours Low temperature storage test: maximum rated storage temperature /2000 hours Temperature cycle test: -40℃(30min)←85℃(30min), RAMP: 10/min, 500cycle Moisture resistance test: 40℃/95%/56 days, 85℃/85%/2000 hours, sealing time Communication diode element screening test: Temperature screening test: 85℃/ power (maximum rated power)/96 hours screening failure determination: Compare the optical output power with the fixed current, and determine failure if the error is larger than 10% Communication diode module screening test: Step 1: Temperature cycle screening: -40℃(30min)←→85℃(30min), RAMP: 10/min, 20cycle, no power supply Step 2: Temperature screening test: 85℃/ power (maximum rated power)/96 hours      
    Read More
  • IEEE1513 Temperature Cycle Test and Humidity Freezing Test, Thermal-humidity Test 2 IEEE1513 Temperature Cycle Test and Humidity Freezing Test, Thermal-humidity Test 2
    Sep 29, 2024
    IEEE1513 Temperature Cycle Test and Humidity Freezing Test, Thermal-humidity Test 2 Steps: Both modules will perform 200 cycle temperature cycles between -40 °C and 60 °C or 50 cycle temperature cycles between -40 °C and 90 °C, as specified in ASTM E1171-99. Note: ASTM E1171-01: Test method for photoelectric modulus at Loop Temperature and humidity Relative humidity does not need to be controlled. The temperature variation should not exceed 100℃/ hour. The residence time should be at least 10 minutes and the high and low temperature should be within the requirement of ±5℃ Requirements: a. The module will be inspected for any obvious damage or degradation after the cycle test. b. The module should not show any cracks or warps, and the sealing material should not delaminate. c. If there is a selective electrical function test, the output power should be 90% or more under the same conditions of many original basic parameters Added: IEEE1513-4.1.1 Module representative or receiver test sample, if a complete module or receiver size is too large to fit into an existing environmental test chamber, the module representative or receiver test sample may be substituted for a full-size module or receiver. These test samples should be specially assembled with a replacement receiver, as if containing a string of cells connected to a full-size receiver, the battery string should be long and include at least two bypass diodes, but in any case three cells are relatively few, which summarizes the inclusion of links with the replacement receiver terminal should be the same as the full module. The replacement receiver shall include components representative of the other modules, including lens/lens housing, receiver/receiver housing, rear segment/rear segment lens, case and receiver connector, procedures A, B, and C will be tested. Two full-size modules should be used for outdoor exposure test procedure D. IEEE1513-5.8 Humidity freeze cycle test Humidity freeze cycle test Receiver Purpose: To determine whether the receiving part is sufficient to resist corrosion damage and the ability of moisture expansion to expand the material molecules. In addition, frozen water vapor is the stress for determining the cause of failure Procedure: The samples after temperature cycling will be tested according to Table 3, and will be subjected to wet freezing test at 85 ℃ and -40 ℃, humidity 85%, and 20 cycles. According to ASTM E1171-99, the receiving end with large volume shall refer to 4.1.1 Requirements: The receiving part shall meet the requirements of 5.7. Move out of the environment tank within 2 to 4 hours, and the receiving part should meet the requirements of the high-voltage insulation leakage test (see 5.4). module Purpose: Determine whether the module has sufficient capacity to resist harmful corrosion or widening of material bonding differences Procedure: Both modules will be subjected to wet freezing tests for 20 cycles, 4 or 10 cycles to 85 ° C as shown in ASTM E1171-99. Please note that the maximum temperature of 60 ° C is lower than the wet freezing test section at the receiving end. A complete high voltage insulation test (see 5.4) will be completed after a two to four hour cycle. Following the high voltage insulation test, the electrical performance test as described in 5.2 will be carried out. In large modules may also be completed, see 4.1.1. Requirements: a. The module will check for any obvious damage or degradation after the test, and record any. b. The module should exhibit no cracking, warping, or severe corrosion. There should be no layers of sealing material. c. The module shall pass the high voltage insulation test as described in IEEE1513-5.4. If there is a selective electrical function test, the output power can reach 90% or more under the same conditions of many original basic parameters IEEE1513-5.10 Damp heat test IEEE1513-5.10 Damp heat test Objective: To evaluate the effect and ability of receiving end to withstand long-term moisture infiltration. Procedure: The test receiver is tested in an environmental test chamber with 85%±5% relative humidity and 85 ° C ±2 ° C as described in ASTM E1171-99. This test should be completed in 1000 hours, but an additional 60 hours can be added to perform a high voltage insulation leakage test. The receiving part can be used for testing. Requirements: The receiving end needs to leave the damp heat test chamber for 2 ~ 4 hours to pass the high voltage insulation leakage test (see 5.4) and pass the visual inspection (see 5.1). If there is a selective electrical function test, the output power should be 90% or more under the same conditions of many original basic parameters. IEEE1513 Module test and inspection procedures IEEE1513-5.1 Visual inspection procedure Purpose: To establish the current visual status so that the receiving end can compare whether they pass each test and guarantee that they meet the requirements for further testing. IEEE1513-5.2 Electrical performance test Objective: To describe the electrical characteristics of the test module and the receiver and to determine their peak output power. IEEE1513-5.3 Ground continuity test Purpose: To verify electrical continuity between all exposed conductive components and the grounding module. IEEE1513-5.4 Electrical isolation test (dry hi-po) Purpose: To ensure that the electrical insulation between the circuit module and any external contact conductive part is sufficient to prevent corrosion and safeguard the safety of workers. IEEE1513-5.5 Wet insulation resistance test Purpose: To verify that moisture cannot penetrate the electronically active part of the receiving end, where it could cause corrosion, ground failure, or identify hazards for human safety. IEEE1513-5.6 Water spray test Objective: The field wet resistance test (FWRT) evaluates the electrical insulation of solar cell modules based on humidity operating conditions. This test simulates heavy rain or dew on its configuration and wiring to verify that moisture does not enter the array circuit used, which can increase corrosiveness, cause ground failures, and create electrical safety hazards for personnel or equipment. IEEE1513-5.7 Thermal cycle test (Thermal cycle test) Objective: To determine whether the receiving end can properly withstand the failure caused by the difference in thermal expansion of parts and joint materials. IEEE1513-5.8 Humidity freeze cycle test Objective: To determine whether the receiving part is sufficiently resistant to corrosion damage and the ability of moisture expansion to expand the material molecules. In addition, frozen water vapor is the stress for determining the cause of failure. IEEE1513-5.9 Robustness of terminations test Purpose: To ensure the wires and connectors, apply external forces on each part to confirm that they are strong enough to maintain normal handling procedures. IEEE1513-5.10 Damp heat test (Damp heat test) Objective: To evaluate the effect and ability of receiving end to withstand long-term moisture infiltration. I EEE1513-5.11 Hail impact test Objective: To determine whether any component, especially the condenser, can survive hail. IE EE1513-5.12 Bypass diode thermal test (Bypass diode thermal test) Objective: To evaluate the availability of sufficient thermal design and use of bypass diodes with relative long-term reliability to limit the adverse effects of module thermal shift diffusion. IEEE1513-5.13 Hot-spot endurance test (Hot-Spot endurance test) Objective: To assess the ability of modules to withstand periodic heat shifts over time, commonly associated with failure scenarios such as severely cracked or mismatched cell chips, single point open circuit failures, or uneven shadows (shaded portions). I EEE1513-5.14 Outdoor exposure test (Outdoor exposure test) Purpose: In order to preliminarily assess the capability of the module to withstand exposure to outdoor environments (including ultraviolet radiation), the reduced effectiveness of the product may not be detected by laboratory testing. IEEE1513-5.15 Off-axis beam damage test Purpose: To ensure that any part of the module is destroyed due to module deviation of the concentrated solar radiation beam.  
    Read More
  • IEC 60068-2 Combined Condensation and Temperature and Humidity Test IEC 60068-2 Combined Condensation and Temperature and Humidity Test
    Sep 27, 2024
    IEC 60068-2 Combined Condensation and Temperature and Humidity Test In the IEC60068-2 specification, there are a total of five kinds of humid heat tests. In addition to the common 85℃/85%R.H., 40℃/93%R.H. fixed-point high temperature and high humidity, there are two more special tests [IEC60068-2-30, IEC60068-2-38], they are alternating wet and humid cycle and temperature and humidity combined cycle, so the test process will change temperature and humidity. Even multiple groups of program links and cycles applied in IC semiconductors, parts, equipment, etc. To simulate the outdoor condensation phenomenon, evaluate the material's ability to prevent water and gas diffusion, and accelerate the product's tolerance to deterioration, the five specifications are organized into a comparison table of the differences in the wet and heat test specifications, and the main points of the test are explained in detail for the wet and heat combined cycle test, and the test conditions and points of GJB in the wet and heat test are supplemented. IEC60068-2-30 alternating humid heat cycle test Note: This test uses the test technique of maintaining humidity and temperature alternations to make moisture permeate into the sample and produce condensation (condensation) on the surface of the product to confirm the adaptability of the component, equipment or other products in use, transportation and storage under the combination of high humidity and temperature and humidity cycle changes. This specification is also suitable for large test samples. If the equipment and the test process need to keep the power heating components for this test, the effect will be better than IEC60068-2-38, the high temperature used in this test has two (40 °C, 55 °C), the 40 °C is to meet most of the world's high temperature environment, while 55 °C meets all the world's high temperature environment, the test conditions are also divided into [cycle 1, cycle 2], In terms of severity, [Cycle 1] is higher than [Cycle 2]. Suitable for side products: components, equipment, various types of products to be tested Test environment: the combination of high humidity and temperature cyclic changes produces condensation, and three kinds of environments can be tested [use, storage, transportation ([packaging is optional)] Test stress: Breathing causes water vapor to invade Whether power is available: Yes Not suitable for: parts that are too light and too small Test process and post-test inspection and observation: check the electrical changes after moisture [do not take out the intermediate inspection] Test conditions: humidity: 95% R.H. warming] after [humidity maintain (25 + 3 ℃ low temperature - - high temperature 40 ℃ or 55 ℃) Rising and cooling rate: heating (0.14℃/min), cooling (0.08~0.16℃/min) Cycle 1: Where absorption and respiratory effects are important features, the test sample is more complex [humidity not less than 90%R.H] Cycle 2: In the case of less obvious absorption and respiratory effects, the test sample is simpler [humidity is not less than 80%R.H.] IEC60068-2-30 Alternating temperature and humid test (condensation test) Note: For component types of parts products, a combination test method is used to accelerate the confirmation of the test sample's tolerance to degradation under high temperature, high humidity and low temperature conditions. This test method is different from the product defects caused by respiration [dew, moisture absorption] of IEC60068-2-30. The severity of this test is higher than that of other humid heat cycle tests, because there are more temperature changes and [respiration] during the test, and the cycle temperature range is larger [from 55℃ to 65℃]. The temperature variation rate of the temperature cycle also becomes faster [temperature rise :0.14℃/min becomes 0.38℃/min, 0.08℃/min becomes 1.16 ℃/min]. In addition, different from the general humid heat cycle, the low temperature cycle condition of -10℃ is increased, which accelerates the breathing rate and makes the water condensing in the gap of the substitute icing. Is the characteristic of this test specification, the test process allows power and load power test, but can not affect the test conditions (temperature and humidity fluctuation, rising and cooling rate) because of the heating of the side product after power, due to the change of temperature and humidity during the test process, but the top of the test chamber can not condenses water droplets to the side product. Suitable for side products: components, metal components sealing, lead end sealing Test environment: combination of high temperature, high humidity and low temperature conditions Test stress: accelerated breathing + frozen water Whether it can be powered on: it can be powered on and external electric load (it can not affect the conditions of the test chamber because of power heating) Not applicable: Can not replace moist heat and alternating humid heat, this test is used to produce defects different from respiration Test process and post-test inspection and observation: check the electrical changes after moisture [check under high humidity conditions and take out after test] Test conditions: damp temperature and humidity cycle (25 ↔ 65 + 2 ° C / 93 + 3% r.h.) - low temperature cycle (25 ↔ 65 + 2 ℃ / 93 + 3% r.h. -- 10 + 2 ° C) X5 cycle = 10 cycle Rising and cooling rate: heating (0.38℃/min), cooling (1.16 °C/min) GJB150-o9 humid heat test Description: The wet and heat test of GJB150-09 is to confirm the ability of equipment to withstand the influence of hot and humid atmosphere, suitable for equipment stored and used in hot and humid environment, equipment prone to high humidity storage or use, or equipment may have potential problems related to heat and humidity. Hot and humid locations may occur throughout the year in tropical areas, seasonal occurrences in mid-latitudes, and in equipment subjected to comprehensive changes in pressure, temperature and humidity. The specification specifically emphasizes 60 ° C /95%R.H. This high temperature and humidity does not occur in nature, nor does it simulate the humid and thermal effect after solar radiation, but it can find potential problems in the equipment. However, it is not possible to reproduce complex temperature and humidity environments, assess long-term effects, and reproduce humidity effects associated with low humidity environments.  
    Read More
  • Definition and Characteristics of UV Weathering Test Chamber Definition and Characteristics of UV Weathering Test Chamber
    Sep 07, 2024
    Definition and Characteristics of UV Weathering Test Chamber     Uv weathering test chamber is a professional equipment used to simulate and evaluate the resistance of materials to ultraviolet radiation and corresponding climatic conditions. Its core function is to simulate the effect of ultraviolet light on materials in the natural environment through artificially controlled ultraviolet radiation, temperature and humidity changes, so as to conduct comprehensive and systematic tests on the durability, color stability and physical properties of materials. In recent years, with the development of science and technology and the continuous improvement of material performance requirements, the application of UV weathering test chambers has become more and more extensive, covering plastics, coatings, rubber, textiles and other fields.     The characteristics of the equipment are mainly reflected in its high efficiency and accuracy. First of all, the UV weathering test chamber uses a high-intensity ultraviolet lamp, which emits an ultraviolet spectrum close to sunlight, which can accurately simulate the lighting conditions in the real environment. Secondly, it has a real-time monitoring and control system, which can precisely regulate the internal temperature, humidity and UV intensity to ensure the stability of the test process and the reliability of the results. In addition, the internal material and structural design of the test chamber is also particularly important, which usually uses corrosion resistant and oxidation resistant materials to extend the service life of the equipment and improve the accuracy of the test.     In addition, the application of UV weathering test chamber is not only limited to the aging detection of materials, but also can predict and improve the performance of materials, making manufacturers more forward-looking and scientific in material selection and product design. The use of this equipment to a large extent reduces the quality problems caused by the lack of weather resistance of the product and improves the market competitiveness of the product. Therefore, in the material research and development, the UV weathering test chamber can be described as an indispensable auxiliary tool, which helps enterprises quickly detect and optimize material properties to meet the changing needs of the market.     In short, UV weathering test chamber, as an advanced testing technology, is leading the progress and innovation in the field of materials science. With the increasing demand for environmentally friendly materials and long-lasting products, the importance of such equipment will only become more prominent. Its scientific, reliable and efficient will help all walks of life to develop more high-quality products to cope with more unknown challenges in the future.
    Read More

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

contact us