Dear Valued Customer,
To ensure you select the most cost-effective and practical equipment for your needs, please confirm the following details with our sales team before purchasing our products:
Ⅰ. Workspace Size
The optimal testing environment is achieved when the sample volume does not exceed 1/5 of the total chamber capacity. This ensures the most accurate and reliable test results.
Ⅱ. Temperature Range & Requirements
Specify the required temperature range.
Indicate if programmable temperature changes or rapid temperature cycling is needed. If yes, provide the desired temperature change rate (e.g., °C/min).
Ⅲ. Humidity Range & Requirements
Define the required humidity range.
Indicate if low-temperature and low-humidity conditions are needed.
If humidity programming is required, provide a temperature-humidity correlation graph for reference.
Ⅳ. Load Conditions
Will there be any load inside the chamber?
If the load generates heat, specify the approximate heat output (in watts).
Ⅴ. Cooling Method Selection
Air Cooling – Suitable for smaller refrigeration systems and general lab conditions.
Water Cooling – Recommended for larger refrigeration systems where water supply is available, offering higher efficiency.
The choice should be based on lab conditions and local infrastructure.
Ⅵ. Chamber Dimensions & Placement
Consider the physical space where the chamber will be installed.
Ensure the dimensions allow for easy access room, transportation, and maintenance.
Ⅶ. Test Shelf Load Capacity
If samples are heavy, specify the maximum weight requirement for the test shelf.
Ⅷ. Power Supply & Installation
Confirm the available power supply (voltage, phase, frequency).
Ensure sufficient power capacity to avoid operational issues.
Ⅹ. Optional Features & Accessories
Our standard models meet general testing requirements, but we also offer:
1.Customized fixtures
2.Additional sensors
3.Data logging systems
4.Remote monitoring capabilities
5.Specify any special accessories or spare parts needed.
Ⅺ. Compliance with Testing Standards
Since industry standards vary, please clearly specify the applicable testing standards and clauses when placing an order. Provide detailed temperature/humidity points or special performance indicators if required.
Ⅺ. Other Custom Requirements
If you have any unique testing needs, discuss them with our engineers for tailored solutions.
Ⅻ. Recommendation: Standard vs. Custom Models
Standard models offer faster delivery and cost efficiency.
However, we also specialize in custom-built chambers and OEM solutions for specialized applications.
For further assistance, contact our sales team to ensure the best configuration for your testing requirements.
GUANGDONG LABCOMPANION LTD
Precision Engineering for Reliable Testing
Refrigeration System
The refrigeration system is one of the critical components of a comprehensive test chamber. Generally, refrigeration methods include mechanical refrigeration and auxiliary liquid nitrogen refrigeration. Mechanical refrigeration employs a vapor compression cycle, primarily consisting of a compressor, condenser, throttle mechanism, and evaporator. If the required low temperature reaches -55°C, single-stage refrigeration is insufficient. Therefore, Labcompanion's constant temperature and humidity chambers typically use a cascade refrigeration system. The refrigeration system is divided into two parts: the high-temperature section and the low-temperature section, each of which is a relatively independent refrigeration system. In the high-temperature section, the refrigerant evaporates and absorbs heat from the low-temperature section's refrigerant, causing it to vaporize. In the low-temperature section, the refrigerant evaporates and absorbs heat from the air inside the chamber to achieve cooling. The high-temperature and low-temperature sections are connected by an evaporative condenser, which serves as the condenser for the high-temperature section and the evaporator for the low-temperature section.
Heating System
The heating system of the test chamber is relatively simple compared to the refrigeration system. It mainly consists of high-power resistance wires. Due to the high heating rate required by the test chamber, the heating system is designed with significant power, and heaters are also installed on the chamber's base plate.
Control System
The control system is the core of the comprehensive test chamber, determining critical indicators such as heating rate and precision. Most modern test chambers use PID controllers, while a few employ a combination of PID and fuzzy control. Since the control system is primarily based on software, it generally operates without issues during use.
Humidity System
The humidity system is divided into two subsystems: humidification and dehumidification. Humidification is typically achieved through steam injection, where low-pressure steam is directly introduced into the test space. This method offers strong humidification capacity, rapid response, and precise control, especially during cooling processes where forced humidification is necessary.
Dehumidification can be achieved through two methods: mechanical refrigeration and desiccant dehumidification. Mechanical refrigeration dehumidification works by cooling the air below its dew point, causing excess moisture to condense and thus reducing humidity. Desiccant dehumidification involves pumping air out of the chamber, injecting dry air, and recycling the moist air through a desiccant for drying before reintroducing it into the chamber. Most comprehensive test chambers use the former method, while the latter is reserved for specialized applications requiring dew points below 0°C, albeit at a higher cost.
Sensors
Sensors primarily include temperature and humidity sensors. Platinum resistance thermometers and thermocouples are commonly used for temperature measurement. Humidity measurement methods include the dry-wet bulb thermometer and solid-state electronic sensors. Due to the lower accuracy of the dry-wet bulb method, solid-state sensors are increasingly replacing it in modern constant temperature and humidity chambers.
Air Circulation System
The air circulation system typically consists of a centrifugal fan and a motor that drives it. This system ensures the continuous circulation of air within the test chamber, maintaining uniform temperature and humidity distribution.
Introduction to the Solar Simulation Radiation Test Chamber
The solar simulation irradiation test chamber, also known as the "solar radiation protection test device", is divided into three types according to the test standards and methods: air-cooled xenon lamp (LP/SN-500), water-cooled xenon lamp (LP/SN-500), and desktop xenon lamp (TXE). The difference lies in the temperature, humidity, accuracy, time, etc. of the test. It is an indispensable testing instrument in the aging test chamber series.
The test chamber uses an artificial light source combined with a G7 OUTDOOR filter to adjust the system light source to meet the requirements of IEC61646 for solar simulators by simulating the radiation in natural sunlight. The above system light source is used to conduct the IEC61646 photoaging test on the solar cell module, and the temperature on the back of the module needs to be constantly controlled between 50 ± 10oC during the test. Can automatically monitor temperature; Configure a radiometer to control the irradiance of light, ensuring it remains stable at a specified level, while also controlling the testing time.
During the ultraviolet light cycle period in the solar simulation irradiation test chamber, photochemical reactions are usually not sensitive to temperature. But the rate of any subsequent reaction depends on the temperature. The rate of these reactions accelerates with increasing temperature. Therefore, controlling the temperature during UV exposure is crucial. In addition, it is necessary to ensure that the temperature of the accelerated aging test is consistent with the highest temperature at which the material is directly exposed to sunlight. In the solar simulation irradiation test chamber, the UV exposure temperature can be set at any temperature between 50 ℃ and 80 ℃ based on the illuminance and ambient temperature. The UV exposure temperature is adjusted by a sensitive temperature controller and blower system to achieve excellent uniformity in the temperature of this test chamber.
Dear customer:
Hello, our company is a high-quality development team with strong technical strength, providing high-quality products, complete solutions, and excellent technical services to our customers. The main products include walk-in constant temperature and humidity testing chambers, UV accelerated aging testing machines, rapid temperature change testing chambers, walk-in environmental testing chambers, UV aging testers, constant temperature and humidity chambers, etc. Our company adheres to the principle of building a business with integrity, maintaining quality, and striving for progress. With a more determined pace, we continuously climb new heights and contribute to the national automation industry. We welcome new and old customers to confidently choose the products they like. We will serve you wholeheartedly!
Industrial Computer Reliability Testing
Industrial computers can be divided into three categories according to their application attributes:
(1) Board class: includes Single Board Computer (SBC), Embedded board (Embedded Board), Black Plane, PC/104 module. (2) Subsystem class: includes single-board computers, boards, chassis, power supplies and other peripherals combined into operational subsystems, such as industrial servers and workstations. (3) System integration solutions: refers to a set of systems developed for a professional field, including the required software and hardware and surrounding, such as automatic teller machines (ATMs). The application of industrial computers widely covers ATM, POS, medical electronic equipment, game machines, gambling equipment, etc. The multi-field industry makes industrial computers must be able to withstand the use of sunlight, high and low temperature, wet and other environments, so the relevant reliability test is the focus of various manufacturers in the research and development test.
Common reliability tests for industrial computers:
(1) Wide temperature test
According to the actual application environment can be divided into four categories: 1. Outdoor: especially for the extreme low temperature or high temperature areas, such as northern Europe and desert countries, the temperature range can be from -50 to 70°C; 2. Enclosed space: for example, where heat sources are generated, such as next to a boiler, the high temperature range is about 70°C; 3. Mobile equipment: such as vehicle equipment, the high temperature can be up to 90°C according to the car area; 4. Special harsh environment: such as aerospace equipment, military, oil drilling equipment.
(2) Aging stress test
The temperature range is from -40°C to 85°C, and the temperature variation rate is 10 °C per minute for cyclic testing
(3) No wind high temperature test
At present, in order to prevent dust, industrial computers are planned to be closed and fanless in the mechanism design, so more and more manufacturers begin to pay attention to high temperature testing in a windless environment to ensure that high temperatures will not collapse
Note: For complete industrial computer test conditions, please consult LAB COMPANION