banner
Home

Blog

Blog

  • Comparison of Climatic Test and Environmental Test Comparison of Climatic Test and Environmental Test
    Sep 19, 2024
    Comparison of Climatic Test and Environmental Test Climate environment test -- constant temperature and humidity test chamber, high and low temperature test chamber, cold and hot shock test chamber, wet and heat alternating test chamber, rapid temperature change test chamber, linear temperature change test chamber, walk-in constant temperature and humidity test chamber, etc. They all involve temperature control. Because there are multiple temperature control points to choose from, the climate chamber temperature control method also has three solutions: inlet temperature control, product temperature control and "cascade" temperature control. The first two are single-point temperature control, and the third is two-parameter temperature control. Single point temperature control method has been very mature and widely used. Most of the early control methods were "ping-pong" switch control, commonly known as heating when it's cold and cooling when it's hot. This control mode is a feedback control mode. When the temperature of the circulating air flow is higher than the set temperature, the electromagnetic valve of refrigeration is opened to deliver cold volume to the circulating air flow and reduce the temperature of the air flow. Otherwise, the circuit switch of the heating device is switched on to directly heat the circulating air flow. Raise the temperature of the air stream. This control mode requires that the refrigeration device and heating components of the test chamber are always in a standby working state, which not only wastes a lot of energy, but also the controlled parameter (temperature) is always in an "oscillation" state, and the control accuracy is not high. Now the single-point temperature control method is mostly changed to the universal proportional differential integral (PID) control method, which can give the controlled temperature correction according to the past change of the controlled parameter (integral control) and the change trend (differential control), which not only saves energy, but also the "oscillation" amplitude is small and the control accuracy is high. Dual-parameter temperature control is to collect the temperature value of the air inlet of the test chamber and the temperature value near the product at the same time. The air inlet of the test chamber is very close to the installation position of the evaporator and heater in the air modulation room, and its magnitude directly reflects the air modulation result. Using this temperature value as the feedback control parameter has the advantage of quickly modulating the status parameters of the circulating air. The temperature value near the product indicates the real temperature environmental conditions suffered by the product, which is the requirement of the environmental test specification. Using this temperature value as the parameter of feedback control can ensure the effectiveness and credibility of the temperature environmental test, so this approach takes into account the advantages of both and the requirements of the actual test. The dual-parameter temperature control strategy can be the independent "time-sharing control" of the two groups of temperature data, or the weighted two temperature values can be combined into one temperature value as a feedback control signal according to a certain weighting coefficient, and the value of the weighting coefficient is related to the size of the test chamber, the wind speed of the circulating air flow, the size of the temperature change rate, the heat output of the product work and other parameters. Because heat transfer is a complex dynamic physical process, and is greatly affected by the atmospheric environment conditions around the test chamber, the working state of the tested sample itself, and the complexity of the structure, it is difficult to establish a perfect mathematical model for the temperature and humidity control of the test chamber. In order to improve the stability and accuracy of control, fuzzy logic control theory and method are introduced in the control of some temperature test chambers. In the control process, the thinking mode of human is simulated, and the predictive control is adopted to control the temperature and humidity space field more quickly. Compared with the temperature, the selection of humidity measurement and control points is relatively simple. During the circulation flow of the well-regulated humid air into the high and low temperature cycle test chamber, the exchange of water molecules between the wet air and the test piece and the four walls of the test chamber is very small. As long as the temperature of the circulating air is stable, the circulating air flow from entering the test chamber to exiting the test chamber is in the process. The moisture content of wet air changes very little. Therefore, the relative humidity value of the detected air at any point of the circulating air flow field in the test box, such as the inlet, the middle stream of the flow field or the return air outlet, is basically the same. Because of this, in many test chambers that use the wet and dry bulb method to measure humidity, the wet and dry bulb sensor is installed at the return air outlet of the test chamber. Moreover, from the structural design of the test box and the convenience of maintenance in use, the wet and dry bulb sensor used for relative humidity measurement and control is placed at the return air inlet for easy installation, and also helps to regularly replace the wet bulb gauze and clean the temperature sensing head of the resistance PT100, and according to the requirements of the GJB150.9A wet heat test 6.1.3. The wind speed passing through the wet-bulb sensor should not be lower than 4.6m/s. The wet-bulb sensor with a small fan is installed at the return air outlet for easier maintenance and use.      
    Read More
  • Application of Thermal Shock Test Chamber Application of Thermal Shock Test Chamber
    Sep 19, 2024
    Application of Thermal Shock Test Chamber Thermal shock test chamber is an indispensable test equipment for aviation, automotive, home appliances, scientific research and other fields, used to test and determine the parameters and performance of electrical, electronic and other products and materials after temperature environment changes in high temperature, low temperature, alternating humidity and heat degree or constant test; Or constant humid heat test after the temperature environment changes the parameters and performance. Applicable to schools, factories, research positions, etc. 1, the high and low temperature impact test chamber with automatic, high-precision system loop, any part action, fully PLC locking processing, all use PID automatic calculation control, high temperature control precision, advanced scientific air circulation cycle design, make the indoor temperature uniform, avoid any dead corners; The complete protection device avoids any possible hidden dangers and ensures the long-term reliability of the equipment. 2, high and low temperature impact test chamber adopts advanced measuring device, and the controller adopts a large color LCD man-machine touch dialogue LCD man-machine interface controller, which is simple to operate, easy to learn, stable and reliable, and displays the complete system operation status, execution and setting program curve in Chinese and English. With 96 test specifications independently set, impact time 999 hours 59 minutes, cycle cycle 1~999 times can be set, can realize the automatic operation of the refrigerator, to a large extent to achieve automation, reduce the workload of the operator, can automatically start and stop working at any time. 3, The left side of the chamber has a test hole with a diameter of 50mm, which can be used for wiring test parts with external power load. Can be independently set high temperature, low temperature and cold and thermal shock three different conditions of the function, and in the implementation of cold and thermal shock conditions, you can choose two or three trough and cold flushing, hot flushing impact function, with high and low temperature testing machine function.
    Read More
  • Solar Module Test Project Solar Module Test Project
    Sep 18, 2024
    Solar Module Test Project 1. solar module reliability test specification: The reliability test of the solar module is to confirm the performance of the solar module (early), and the test specifications for the module are mainly IEC61215, IEC61646, UL1703 three test specifications. IEC61215 is suitable for crystalline (Si) modules; IEC61646 is suitable for thin-film (Thin-flm) modules; The UL1703 is suitable for both crystalline and thin film solar modules. In addition, the GB and CNS solar energy specifications are partially modified from the IEC. 2. the relationship and importance of Macro Exhibition and solar energy test projects: According to IEC61215, IEC61646 test items a total of about 10 (solar module test items corresponding to the general table). Among them, the test equipment manufactured by Hongjian will be used, and the relevant test conditions are temperature cycling (Thermal cycling, 10.11). There are three categories of Humidity freeze (10.12) and Damp heat (10.13), while UL1703 only has two items of temperature cycle wet freezing without the item of damp heat. 3. Thermal cycling test (Thermal cycling)lEC61215-10-11: Solar module temperature cycle test is used to determine the fatigue, thermal failure, or other stress failure caused by repeated changes in temperature of the module. The current number of temperature cycles is 200 times, and the future trend will be 600 times (according to the test results of the American Association for Renewable Energy [NREL], the power degradation rate of 600 times is greater than 200 times as much as twice). Through the temperature cycle: defects of the module can be found: crack growth, module cracks, warping, sealing material delamination, point shedding, glass corrosion... Let's wait. Temperature conditions: Low temperature :-40℃, high temperature :85°C(IEC), 90 °C(UL), the fastest temperature variability (average):100 °C /h, 120 °C /h, relevant measurements need to be carried out during the test (using the Qingsheng solar energy measurement system), the test process needs to measure the module: module surface temperature, voltage and current, ground continuity, insulation... Let's wait. 4. the purpose of the temperature cycle test process through bias: Temperature cycle test process, the specification requires through bias, the purpose of the test is to make the defective Cell heat to accelerate aging and accelerate failure test purposes, so it needs to be energized above 25℃ during the temperature cycle process, the laboratory in the United States has statistics, It was found that the difference between the failure rate of the solar module with power and without power is as high as 30%, and the experimental data indicates that if there is no power, the solar module is not easy to fail in the temperature cycle environment, so when carrying out the temperature cycle test of the solar cell (Cel)& module, it needs to be matched with a special measurement system. 5. the introduction of wet freezing test lEC61215-10-12: Description: To determine whether the component is sufficiently resistant to corrosion damage and the ability of moisture expansion to expand the material molecules, frozen moisture is the stress to determine the cause of failure. For the product to be tested, the test stress is high temperature and high humidity (85℃/85%R.H) to low temperature (-40℃ humidity 85%R.H). Maintain to 25℃), and low temperature rise to high temperature and high humidity, rather than 85℃/85%R.H./20 hours, 85℃/85%R.H./20 hours, the purpose of 85℃/85%R.H./20 hours is to let the module surrounding full of water, 20 hours dwell time is too short, is not enough for water to penetrate into the module and junction box inside. Through wet freezing test: Module defects can be found: cracks, warping, severe corrosion, lamination of sealing materials, failure of adhesive delamination junction box & water accumulation, wet insulation **... Etc. Test conditions: 85 ℃ / 85% R.H. (h) 20-40 ℃ (0.5 ~ 4 h), maximum heat up 100, 120 ℃ / h, and maximum temperature of 200 ° C/h. 6. Purpose of wet freezing test: The wet freezing test method is mainly to perform two kinds of damage to the solar module in a snowy environment. (1). High temperature and humidity (85℃/85%R.H.) drop to -4℃ before 25℃, humidity should be controlled at 85%+5% RH. The purpose of this is to simulate the high humidity sudden change before the snow. Before the snow, the environment will show a high humidity state, and when the temperature drops to 0℃, the water gas around the module and the junction box sealant will freeze. When the water gas freezes, its volume will expand to 1.1 times of the original, and the destruction method of ice expansion after the water gas penetrates the material gap through the water gas to achieve the purpose of this test. At present, the statistical results of wet freezing have the highest damage to junction box sealant, which will cause junction box degumming and water, and the failure ratio of module is estimated at 7%. (2). The purpose of heating up from low temperature (-40℃) and humidity (50℃/85%R.H.) is to simulate the temperature rise in the module at sunrise in a snowy climate. Although the outdoor environment is still below 0℃, the solar module will generate electricity when there is light, and because the snow is still on the module, the heat spot effect will occur in the module. The temperature inside the module will also reach 50 ° C. 7. wet heat test (Damp heat) test IEC61215-10-13: Description: To determine the ability of the module to resist long-term moisture penetration, according to the test results of BP Solar, its 1000 hours is not enough. The actual condition is found that the time to make the module have problems needs at least 1250 hours. According to the current requirements of the specification, the wet heat test process is not powered on, but the future trend is also to be powered on (positive and reverse bias), because it can accelerate the aging and failure of solar cells. Test conditions: 85℃/85%R.H., time :1000 hours Defects can be found through the wet and thermal test: CELL delamination EVA(delamination, discoloration, bubble formation, atomization, Browning), connection line blackening, TCO corrosion, spot corrosion, Thin-film yellow discoloration, junction box degumming off    
    Read More
  • Working Principle of UV Weathering Test Chamber Working Principle of UV Weathering Test Chamber
    Sep 18, 2024
    Working Principle of UV Weathering Test Chamber Uv weathering test chamber is a kind of experimental equipment specially used to test the durability and stability of materials and products under ultraviolet radiation. Its working principle revolves around mimicking UV radiation conditions in the natural environment to assess how materials behave when exposed to sunlight for long periods of time. The chamber is equipped with a series of high-intensity ultraviolet light sources that effectively emit ultraviolet light in a specific wavelength range, mimicking the UV-A and UV-B bands of natural sunlight. During the test, the sample is placed in the test chamber, and ultraviolet radiation will cause changes in the chemical structure of the surface of the material, such as color fading, strength reduction and brittleness increase. At the same time, the test chamber can also be combined with environmental factors such as temperature and humidity for a more comprehensive evaluation of the sample. For example, the humidity control system in the laboratory can simulate the effects of rain and moisture, while the temperature control equipment can reproduce extreme hot or cold conditions. By exposing the samples to multiple rounds of ultraviolet radiation at different time periods, researchers were able to collect a large amount of experimental data and analyze the aging resistance and service life of the samples in depth. These data play a vital role in material development, product quality control and market demand analysis. In addition, the use of UV weathering test chambers also helps companies anticipate possible performance problems before the launch of new products, so as to make timely adjustments and improvements. Such tests are not only applicable to plastics, coatings, fibers and other materials, but also widely used in various industries such as automobiles, construction fields and even electronic products. By studying the performance of products in different climatic conditions, companies can improve the competitiveness of their products in the market, but also contribute to the environmental cause, because good weather resistance products usually mean a longer life cycle and less material waste. In short, UV weathering test chambers play a key role in materials science and product development, not only allowing developers to better grasp material properties, but also for consumers to bring higher quality and more durable products. In the future development of science and technology, with the continuous progress of ultraviolet weathering test technology, we may be able to witness the birth of more new materials and new products, adding more convenience and beauty to our lives.
    Read More
  • Definition and Characteristics of UV Weathering Test Chamber Definition and Characteristics of UV Weathering Test Chamber
    Sep 07, 2024
    Definition and Characteristics of UV Weathering Test Chamber     Uv weathering test chamber is a professional equipment used to simulate and evaluate the resistance of materials to ultraviolet radiation and corresponding climatic conditions. Its core function is to simulate the effect of ultraviolet light on materials in the natural environment through artificially controlled ultraviolet radiation, temperature and humidity changes, so as to conduct comprehensive and systematic tests on the durability, color stability and physical properties of materials. In recent years, with the development of science and technology and the continuous improvement of material performance requirements, the application of UV weathering test chambers has become more and more extensive, covering plastics, coatings, rubber, textiles and other fields.     The characteristics of the equipment are mainly reflected in its high efficiency and accuracy. First of all, the UV weathering test chamber uses a high-intensity ultraviolet lamp, which emits an ultraviolet spectrum close to sunlight, which can accurately simulate the lighting conditions in the real environment. Secondly, it has a real-time monitoring and control system, which can precisely regulate the internal temperature, humidity and UV intensity to ensure the stability of the test process and the reliability of the results. In addition, the internal material and structural design of the test chamber is also particularly important, which usually uses corrosion resistant and oxidation resistant materials to extend the service life of the equipment and improve the accuracy of the test.     In addition, the application of UV weathering test chamber is not only limited to the aging detection of materials, but also can predict and improve the performance of materials, making manufacturers more forward-looking and scientific in material selection and product design. The use of this equipment to a large extent reduces the quality problems caused by the lack of weather resistance of the product and improves the market competitiveness of the product. Therefore, in the material research and development, the UV weathering test chamber can be described as an indispensable auxiliary tool, which helps enterprises quickly detect and optimize material properties to meet the changing needs of the market.     In short, UV weathering test chamber, as an advanced testing technology, is leading the progress and innovation in the field of materials science. With the increasing demand for environmentally friendly materials and long-lasting products, the importance of such equipment will only become more prominent. Its scientific, reliable and efficient will help all walks of life to develop more high-quality products to cope with more unknown challenges in the future.
    Read More
  • High and Low Temperature Test Standard of PC Plastic Material High and Low Temperature Test Standard of PC Plastic Material
    Sep 04, 2024
    High and Low Temperature Test Standard of PC Plastic Material 1. High temperature test     After being placed at 80±2℃ for 4 hours and at normal temperature for 2 hours, the dimensions, insulation resistance, voltage resistance, key function, and loop resistance meet the normal requirements, and there are no abnormal phenomena such as deformation, warping, and degumming in appearance. The key convex point collapses at high temperature and the press force becomes smaller without assessment. 2. Low temperature test After being placed at -30±2℃ for 4 hours and at normal temperature for 2 hours, the dimensions, insulation resistance, voltage resistance, key function, and loop resistance meet normal requirements, and there are no abnormal phenomena such as deformation, warping, and degumming in appearance. 3. Temperature cycle test Put in 70±2℃ environment for 30 minutes, take out at room temperature for 5 minutes; Leave in -20±2℃ environment for 30 minutes, remove and leave at room temperature for 5 minutes. After such 5 cycles, the dimensions, insulation resistance, voltage resistance, key function, circuit resistance meet the normal requirements, and the appearance of no deformation, warping, degumming and other abnormal phenomena. The key convex point collapses at high temperature and the press force becomes smaller without assessment. 4. Heat resistance After being placed in an environment with a temperature of 40±2℃ and a relative humidity of 93±2%rh for 48 hours, the dimensions, insulation resistance, voltage resistance, key function, and loop resistance meet normal requirements, and the appearance is not deformed, warped, or degumped. The key convex point collapses at high temperature and the press force becomes smaller without assessment. National standard value for plastic testing: Gb1033-86 Plastic density and relative density test method Gbl636-79 Test method for apparent density of moulding plastics GB/ T7155.1-87 Thermoplastic pipe and pipe fittings density determination part: polyethylene pipe and pipe fittings reference density determination GB/ T7155.2-87 Thermoplastic pipes and fittings -- Determination of density -- Part L: Determination of density of polypropylene pipes and fittings GB/T1039-92 General rules for testing mechanical properties of plastics GB/ T14234-93 Surface roughness of plastic parts Gb8807-88 plastic mirror gloss test method Test method for tensile properties of GBL3022-9L plastic film GB/ TL040-92 Test method for tensile properties of plastics Test method for tensile properties of GB/ T8804.1-88 thermoplastic pipes polyvinyl chloride pipes GB/ T8804.2-88 Test methods for tensile properties of thermoplastic pipes Polyethylene pipes Hg2-163-65 plastic low temperature elongation test method GB/ T5471-85 Method for preparing thermosetting molding specimens HG/ T2-1122-77 thermoplastic sample preparation method GB/ T9352-88 thermoplastic compression sample preparation www.oven.cc labcompanion.cn   Lab Companion Chinalabcompanion.com.cn  Lab Companion Chinalab-companion.com    Lab Companion   labcompanion.com.hk  Lab Companion Hong Konglabcompanion.hk  Lab Companion Hong Konglabcompanion.de  Lab Companion Germany labcompanion.it    Lab Companion Italy  labcompanion.es   Lab Companion Spain   labcompanion.com.mx  Lab Companion Mexico   labcompanion.uk  Lab Companion United Kingdomlabcompanion.ru  Lab Companion Russia   labcompanion.jp  Lab Companion Japan    labcompanion.in  Lab Companion India  labcompanion.fr   Lab Companion Francelabcompanion.kr  Lab Companion Korea
    Read More
  • LED Street Lamp Test Specification LED Street Lamp Test Specification
    Sep 04, 2024
    LED Street Lamp Test Specification     LED street lights are currently one of the key implementation methods to save energy and reduce carbon, all countries in the world have been in full swing to replace the original traditional street lights with LED street lights, and the new street is directly limited to the use of LED street lights to save energy. At present, the world LED street lamp market size of about 80 million, LED lamp light source whether it is heat, service life, output spectrum, output illuminance, material characteristics, are different from traditional mercury lamp or high-pressure sodium lamp. The test conditions and test methods of LED street lights are different from traditional lamps. Lab Companion collected the reliability test methods related to LED street lights at present and provide you with reference to help you understanding the related tests about LED. LED street lamp test specification abbreviation: LED street lamp test standard specification, LED street lamp test method technical specification, LED street lamp standard and test method, night landscape engineering semiconductor lighting device components product technical specification, semiconductor lighting night landscape engineering construction quality acceptance technical specification, IEC 61347LED power supply safety regulation LED street lamp test specification conditions: CJJ45-2006 Urban road lighting design standard, UL1598 lamps safety standard, UL48 wire and cable safety standard, UL8750 light-emitting diode safety standard, CNS13089 light-emitting diode large lamp durability Test - pre-burning test - outdoor, Waterproof Test: IP65, American Standard for LED lamps, EN 60598-1, EN 60598-2 Street lamp test LED large lamp quality certification test project: Temperature cycle, temperature and humidity cycle, high temperature preservation, moisture resistance, vibration, shock, continuous power, salt water spray, acceleration, solder heat resistance, solder adhesion, terminal strength, natural drop, dust test LED large lamp quality certification test conditions: Temperature cycle: 125℃(30min)←R.T.(5min)→-65℃(30min)/5cycle LED street lamp (light-emitting diode outdoor display with large lights) failure determination: a. The axis light is lower than the residual rating of 50% b. Forward voltage is greater than 20% of the rated value c. Reverse current greater than 100% of the rated value d. The half height wave length and half power Angle of the light exceed the limited maximum value or the limited minimum value meet the above conditions, and determine the failure of the LED street lamp Note: The luminous efficiency of LED street lamp is recommended to be at least 45lm/W or above (the luminous efficiency of LED light source must be about 70 ~ 80lm/W) High temperature storage: maximum storage temperature 1000 hours [special level 3000 hours] Moisture resistance: 60℃/90%R.H./1000 hours [characteristic level 2000 hours]/ applying bias Brine spray: 35℃/ concentration 5%/18 hours [24 hours special level] Continuous power: maximum forward current 1000 hours Natural fall: Fall height 75cm/ fall times 3 times/fall material smooth maple wood Dust test: continuous 360 hours of 50℃ ring temperature test Vibration: 100 ~ 2000Hz, 196m/s^2, 48 hours Impact: Grade F[Acceleration 14700m/s^2, pulse amplitude 0.5ms, six directions, three times in each direction] Equal acceleration: Acceleration is applied in all directions (class D: 196000 m/s^2) for 1 minute Solder heat resistance: 260℃/10 seconds /1 time Solder adhesion: 250℃/5 seconds Terminal strength LED large lamp batch quality test project: Terminal strength, solder heat resistance, temperature cycle, moisture resistance, continuous power, high temperature storage LED large lamp batch quality test conditions: Moisture resistance: 60℃/90%R.H./168 hours (no failure)/500 hours (one failure allowed)[test number 10 / apply bias] Continuous power on: maximum forward current /168 hours (no failure)/500 hours (one failure allowed)[test number 10] High temperature storage: maximum storage temperature /168 hours (no failure)500 hours (one failure allowed)[test number 10] Solder heat resistance: 260℃/10 seconds /1 time Solder adhesion: 250℃/5 seconds LED large lamp regular quality test project: Vibration, shock, acceleration, moisture resistance, continuous power, high temperature preservation Regular quality test conditions for LED large lights: Moisture resistance: 60℃/90%R.H./1000 hours Continuous power: maximum forward current /1000 hours High temperature storage: Maximum storage temperature /1000 hours Vibration: 100 ~ 2000Hz, 196m/s^2, 48 hours Impact: Grade F[Acceleration 14700m/s^2, pulse amplitude 0.5ms, six directions, three times in each direction] Equal acceleration: Acceleration is applied in all directions (class D: 196000 m/s^2) for 1 minute LED large lamp screening test project: Acceleration test, temperature cycle, high temperature preservation, pre-burning test LED large light screening test conditions: Constant acceleration test: Apply acceleration (grade D: 196000 m/s^2) in each direction for 1 minute Temperature cycle: 85℃(30min)←R.T.(5min)→-40℃(30min)/5cycle Pre-firing test: temperature (maximum rated temperature)/ current (maximum rated forward current)96 hours High temperature storage: 85℃/72 ~ 1000 hours LED lamp life test: More than 1000 hours of Life Test (Life Test), light attenuation < 3% [withered light] More than 15,000 hours of Life Test (Life Test), light attenuation < 8%  
    Read More
  • Test Specification of LCD Display Test Specification of LCD Display
    Sep 03, 2024
    Test Specification of LCD Display     LCD Display, full name of Liquid Crystal Display, is a flat display technology. It mainly uses liquid crystal materials to control the transmission and blocking of light, so as to achieve the display of images. The structure of the LCD usually includes two parallel glass substrates, with a liquid crystal box in the middle, and the polarized light of each pixel is controlled by the rotation direction of the liquid crystal molecules through the voltage, so as to achieve the purpose of imaging. LCD displays are widely used in TV, computer monitors, mobile phones, tablet computers and other devices.     At present, the common liquid crystal display devices are Twisted Nematic (TN), Super Twisted Nematic (Super Twisted Nematic), STN), DSTN(Double layer TN) and color Thin Film Transistors (TFT). The first three kinds of manufacturing basic principles are the same, become passive matrix liquid crystal, and TFT is more complex, because of the retention of memory, and called active matrix liquid crystal.     Due to liquid crystal display has the advantages of small space, thin panel thickness, light weight, flat right-angle display, low power consumption, no electromagnetic radiation, no thermal radiation, it gradually replaces the traditional CRT image tube monitor. LCD displays basically have four display modes: reflection, reflection transmission conversion, projection, transmission. (1) The reflection type liquid crystal display itself does not emit light, through the light source in the space into the LCD panel, and then by its reflective plate will reflect the light to the eyes of people; (2) The reflection transmission conversion type can be used as a reflection type when the light source in the space is sufficient, and the light source in the space is used as lighting when the light is not enough; (3) Projection type is to use the principle of similar movie playback, the use of projected light department to project the image displayed by the liquid crystal display to the remote larger screen; (4) The transmission type liquid crystal display completely uses the hidden light source as lighting. Relevant Test Conditions:   Item Temperature Time Other High temperature storage 60℃,30%RH 120 hours Note 1   Low temperature storage -20℃ 120 hours Note 1   High temperature and high humidity 40℃,95%RH  (non-invasive) 120 hours Note 1 High-temperature operation 40℃,30%RH. 120 hours Standard voltage Temperature shock -20℃(30min)↓25℃(10min)↓20℃(30min)↓25℃(10min) 10cycle Note 1 Mechanical vibration — — Frequency: 5-500hz, acceleration: 1.0g, amplitude: 1.0mm, duration: 15mins, twice in X,Y,Z direction. Item Temperature Time Other Note 1: The tested module should be placed at normal (15 ~ 35℃,45 ~ 65%RH) for one hour before testing    
    Read More
  • Specification for Ground Solar Radiation Simulation Test Specification for Ground Solar Radiation Simulation Test
    Sep 02, 2024
    Specification for Ground Solar Radiation Simulation Test     The purpose of this test method is to determine the physical and chemical effects of components and equipment exposed to solar radiation on the Earth surface (e.g. The main characteristics of the simulated environment in this experiment are the solar spectral energy distribution and intensity of received energy under the control of temperature and humidity in the test environment. There are three procedures in the test mode (Procedure A: thermal effect evaluation, procedure B: degradation effect evaluation, procedure C: photochemical effect evaluation). Applicable products: Electronic products that will be used outside the home for a long time, such as: laptops, mobile phones, MP3&MP4, GPS, automotive electronics, digital cameras, PDAs, low-cost laptops, easy to carry laptops, video cameras, Bluebud headphones Test requirements: 1. Spectral energy distribution shall meet the requirements of the specification 2. Illuminance: 1.120KW/m^2 (±10%)=[300-400um, 63 w/m2][The total global radiation of the earth's surface from the sun and the sky vertical is 1.120KW/m^2] 3. Temperature and humidity 40℃(±2)/93%(±3)R.H. 4. This test needs to control the humidity environment 5. During irradiation, the temperature in the box rises to the specified temperature (40℃, 55℃) at a linear rate. 6. The temperature in the box should start to rise 2 hours before irradiation 7. The temperature in the dark chamber should be decreased linearly and maintained at 25℃ 8. Temperature error: ±2℃ 9. The temperature measurement point in the box is taken from the test distance of 1m from the specimen or half of the box wall distance (the smaller one) Spectral energy distribution and tolerance error range of Xenon lamp (according to the requirements of the International Illuminance Commission CIE) The xenon lamp weather testing machine is not lit, but the spectrum output by its xenon lamp must be output in accordance with the requirements of the International Illuminance Commission CIE. Therefore, the equipment manufacturer of the weather testing machine must have the equipment (spectrometer) and technical capability to verify the xenon lamp spectrum (provide xenon lamp verification report). Test procedure evaluation description: According to IEC68-2-5&IEC-68-2-9, there are three kinds of test methods for light resistance test, which can be divided into program A: thermal effect, B: degradation effect, C: photochemistry. Among these three methods, procedure A is the most severe test method, which will be detailed in the following article. Three test procedures: Procedure A: thermal effect (most severe natural conditions), B: degradation effect (22.4KWh/m2 per day), C: photochemistry Program A: Thermal effect Test conditions: 8 hours of exposure, 16 hours of darkness, a total of 24 hours per cycle, three cycles were required, and the total exposure of each cycle was 8.96KWh/m2 Procedure A test precautions: Instructions: In the test process of program A, the xenon lamp is not lit immediately at the beginning of the test, according to the requirements of the code, it must be lit after 2 hours of the test, closed at 10 hours, and the total irradiation time of a cycle is 8 hours. During the lighting process, the temperature in the furnace rises linearly from 25℃ to 40℃(satisfying most environments in the world) or 55℃(satisfying all environments in the world), and decreases linearly at 10 hours to 25℃ for 4 hours, with a linear slope (RAMP) of 10 hours. Test procedure B: Degradation effect Test conditions: Temperature and humidity in the first four hours of the test was (93%), irradiation for 20 hours, darkness for 4 hours, a total of 24 hours per cycle Total exposure for each cycle was 22.4KWh/m2 cycles: 3(3 days: commonly used), 10(10 days), 56(56 days) Procedure B test precautions: Instructions: Procedure B test is the only test condition for humidity control during light resistance test in IEC68-2-5 specification. The specification requires that the temperature and humidity conditions are (40±2℃/93±3%) within four hours from the beginning of the test [supplementary description in IEC68-2-9] humidity environment, which should be paid attention to when conducting the test. At the beginning of the program B test, the temperature was raised from 25℃ linear slope (RAMP: 2 hours) to 40℃ or 55℃, maintained for 18 hours, and then the linear cooling (RAMP: 2 hours) returned to 25℃ for 2 hours to complete a cycle of experiments. Remarks: IEC68-2-9 = Solar Radiation Test Guidelines Test procedure C: Photochemistry (Continuous Irradiation) Test conditions: 40℃ or 55℃, continuous irradiation (depending on the time required) Procedure C test precautions: Note: After the linear temperature rise (RAMP: 2 hours) from 25℃ to 40℃ or 55℃, the continuous irradiation test was carried out at a fixed temperature before the end of the test. The irradiation time was determined according to the characteristics of the product to be tested in the test, which was not clearly specified in the specification.  
    Read More
  • Bellcore GR78-CORE Test Specification Bellcore GR78-CORE Test Specification
    Sep 02, 2024
    Bellcore GR78-CORE Test Specification Bellcore GR78-CORE is one of the specifications used in the early surface insulation resistance measurement (such as IPC-650). The relevant precautions in this test are organized for the reference of the personnel who need to carry out this test, and can also provide a preliminary understanding of this specification. Test purpose: Surface Insulation resistance testing 1. Constant temperature and humidity test chamber: the minimum test conditions are 35°C±2°C/85%R.H, 85 ±2°C/85%R.H. 2. Ion migration measurement system: Allowing the insulation resistance of the test circuit (pattern) to be measured under these conditions, a power supply will be able to provide 10 Vdc / 100μA. Test procedure: a. The object to be measured is tested after 24 hours at 23℃(73.4℉)/50%R.H. condition. b. Place limited Test patterns on an appropriate rack and keep the test circuits at least 0.5 inches apart, keep air flow and the rack in the furnace until the end of the experiment. c. Place the shelf in the center of the constant temperature and humidity machine, align and parallel the test board with the air flow in the chamber, and lead the line to the outside of the chamber, so that the wiring is far away from the test circuit. d. Close the furnace door and set the condition to 35 ±2°C, at least 85%R.H. and allow the furnace to spend several hours stabilizing e. After 4 days, the insulation resistance will be measured and the measured value will be recorded periodically between 1 and 2,2 and 3,3 and 4, 4 and 5 using an applied voltage of 45 ~ 100 Vdc. Under the test conditions, the test is sent out the measured voltage to the circuit after 1 minute. 2 and 4 are periodically at an identical potential. And 5 periodically at opposite potentials. f. This condition only applies to transparent or translucent materials, such as solder masks and conformal coatings. g. As for multilayer printed circuit boards required for insulation resistance testing, the only normal procedure will be used for insulation resistance testing circuit products. Extra cleaning procedures are prohibited. Method of conformity determination: 1. After the electron migration test is completed, the test sample is removed from the test furnace, illuminated from the back and tested at 10 x magnification, and will not be found to reduce the electron migration (filamental growth) phenomenon by more than 20% between the conductors. 2. adhesives will not be used as a basis for republication when determining compliance with the 2.6.11 test method of IPC-TM-650[8] to examine appearance and surface item by item. Reasons why insulation resistance does not meet the requirements: 1. Contaminants weld the cells like wires on the insulating surface of the substrate, or are dropped by the water of the test furnace (chamber) 2. Incompletely etched patterns will reduce the insulation distance between conductors by more than permitted design requirements 3. Chafes, breaks, or significantly damages the insulation between conductors  
    Read More
  • AEC-Q200 Passive Component Stress Test Certification Specification for Automotive Industry AEC-Q200 Passive Component Stress Test Certification Specification for Automotive Industry
    Aug 31, 2024
    AEC-Q200 Passive Component Stress Test Certification Specification for Automotive Industry     In recent years, with the progress of multi-functional in-vehicle applications, and in the process of popularization of hybrid vehicles and electric vehicles, new uses led by power monitoring functions are also expanding, miniaturization of vehicle parts and high reliability requirements under high temperature environmental conditions (-40 ~ +125℃, -55℃ ~ +175℃) are increasing. A car is composed of many parts. Though these parts are large and small, they are closely related to the life safety of car driving, so every part is required to achieve the highest quality and reliability, even the ideal state of zero defects. In the automotive industry, The importance of quality control of auto parts is often over the functionality of parts, which is different from the needs of consumer electronics for the general people's livelihood, that is to say, for auto parts, the most important driving force of the product is often not [the latest technology], but [quality safety]. In order to achieve the improvement of quality requirements, it is necessary to rely on strict control procedures to check, the current automotive industry for parts qualification and quality system standards is AEC(Automotive Electronics Committee). The active parts designed for the standard [AEC-Q100]. The passive components designed for [AEC-Q200]. It regulates the product quality and reliability that must be achieved for passive parts. Classification of passive components for automotive applications: Automotive grade electronic components (compliant with AEC-Q200), commercial electronic components, power transmission components, safety control components, comfort components, communication components, audio components Parts summary according to AEC-Q200 standard: Quartz oscillator: Application range [tire pressure monitoring systems (TPMS), navigation, anti-lock brakes (ABS), airbags and proximity sensors In-vehicle multimedia, in-vehicle entertainment systems, backup camera lenses] Automotive thick film chip resistors: Application [automotive heating and cooling systems, air conditioning, infotainment systems, automatic navigation, lighting, door and window remote control devices] Automotive sandwich metal oxide varistors: Application [Surge protection of motor components, surge absorption of components, semiconductor overvoltage protection] Low and high temperature surface mount solid molded chip tantalum capacitors: Application [fuel quality sensors, transmissions, throttle valves, drive control systems] Resistance: SMD resistor, film resistor, thermistor, varistor, automotive vulcanization resistance, automotive precision film wafer resistance array, variable resistance Capacitors: SMD capacitors, ceramic capacitors, aluminum electrolytic capacitors, film capacitors, variable capacitors Inductance: Reinforced inductance, inductor Other: LED thin film alumina ceramic cooling substrate, ultrasonic components, overcurrent protection SMD, overtemperature protection SMD, ceramic resonator, automotive PolyDiode semiconductor ceramic electronic protection components, network chips, transformers, network components, EMI interference suppressors, EMI interference filters, self-recovery fuses Passive device stress test grade and minimum temperature range and typical application cases:   Class Temperature range Passive device type Typical application case     Minimum Maximum     0 -50 ℃ 150℃ Flat core ceramic resistor, X8R ceramic capacitor For all cars 1 -40 ° C 125 ° C Network capacitors, resistors, inductors, transformers, thermistors, resonators, quartz oscillators, adjustable resistors, ceramic capacitors, tantalum capacitors For most engines 2 -40 ℃ 105℃ Aluminum electrolytic capacitor Cockpit high temperature point 3 -40 ℃ 85℃ Thin capacitors, ferrites, network low-pass filters, network resistors, adjustable capacitors Most of the cockpit area 4 0 ° C 70 ° C   Non-automotive Note: Certification for applications in higher grade environments: Temperature grades must have a product life worst-case and application design, i.e. at least one batch of each test must be validated for applications in higher grade environments. Number of certification tests required: High temperature storage, high temperature working life, temperature cycle, humidity resistance, high humidity: 77 thermal shock: 30 Number of certification tests Note: This is a destructive test and the component cannot be reused for other certification tests or production    
    Read More
  • JEDEC Semiconductor Reliability Test and Specification JEDEC Semiconductor Reliability Test and Specification
    Aug 28, 2024
    JEDEC, a standardization organization in the semiconductor industry, develops industrial standards in solid state electronics (semiconductor, memory), established for more than 50 years, is a global organization. The standards it has formulated are many industries take over and adopt. It's technical data are open and free of charge, only some of the data need to be charged. So you can go to the official website to register and download, the content contains the definition of professional terms, product specifications, test methods, reliability test requirements... It covers a wide range of topics. JEP122G-2011 Failure mechanism and model of semiconductor components Accelerated life tests are used to identify potential semiconductor failure causes in advance and estimate possible failure rates. The relevant activation energy and acceleration factor formulas are provided in this section for estimation and failure rate statistics under accelerated life tests. Recommended equipment: high and low temperature test chamber, hot and cold shock test chamber, highly accelerated life test chamber, SIR Surface insulation resistance measurement system JEP150.01-2013 Stress test drive failure mechanism associated with assembly of solid state surface mount components GBA and LCC are attached to the PCB, using a more commonly used set of accelerated reliability tests to evaluate the heat dissipation of the production process and product, to identify potential failure mechanisms, or any reason that may cause error failure. Recommended equipment: high and low temperature test chamber, hot and cold shock test chamber, highly accelerated life test chamber JESD22-A100E-2020 Cycle temperature and humidity bias surface condensation life test Test the reliability of non-sealed solid state devices in humid environments through temperature cycling + humidity + current bias. This test specification adopts the method of [temperature cycling + humidity + current bias] to accelerate the penetration of water molecules through the external protective material (sealant) and the interface protective layer between the metal conductor. Such a test will cause condensation on the surface. It can be used to confirm the corrosion and migration phenomenon of the surface of the product to be tested. Recommended equipment: high and low temperature test chamber JESD22-A101D.01-2021 Steady-state temperature and humidity bias life test This standard defines the methods and conditions for performing temperature-humidity life tests under applied bias to assess the reliability of non-airtight packaged solid-state devices (e.g., sealed IC devices) in humid environments. High temperature and humidity conditions are used to accelerate moisture penetration through external protective materials (sealants or seals) or along the interface between external protective coatings and conductors and other through parts. Recommended equipment: high and low temperature test chamber JESD22-A102E-2015 package IC unbiased PCT test To evaluate the integrity of non-airtight packaged devices against water vapor in a condensed or saturated water vapor environment, the sample is placed in a condensed, high-humidity environment under high pressure to allow water vapor to enter the package, exposing weaknesses in the package, such as delamination and metallization layer corrosion. This test is used to evaluate new package structures or updates of materials and designs in the package body. It should be noted that there will be some internal or external failure mechanisms in this test that do not match the actual application situation. Since absorbed water vapor reduces the glass transition temperature of most polymer materials, an unreal failure mode may occur when the temperature is higher than the glass transition temperature. Recommended equipment: Highly accelerated life test chamber JESD22-A104F-2020 Temperature cycle The temperature cycle (TCT) test is the reliability test of the IC part subjected to extremely high temperature and extremely low temperature, back and forth temperature conversion between the test, the IC part is repeatedly exposed to these conditions, after the specified number of cycles, the process is required to specify its temperature change rate (℃/min), in addition to confirm whether the temperature is effectively penetrated into the test product. Recommended equipment: thermal shock test chamber JESD22-A105D-2020 Power and temperature cycle This test is applicable to semiconductor components affected by temperature. In the process, the test power supply needs to be turned on or off under the specified high and low temperature difference conditions. The temperature cycle and power supply test are to confirm the bearing capacity of the components, and the purpose is to simulate the worst situation that will be encountered in practice. Recommended equipment: thermal shock test chamber JESD22-A106B.01-2016 Temperature shock This temperature shock test is carried out to determine the resistance and impact of semiconductor components to sudden exposure to extreme high and low temperature conditions. The temperature change rate of this test is too fast to simulate the real actual use. The purpose is to apply more severe stress on semiconductor components, accelerate the damage of their vulnerable points, and find out the possible potential damage. Recommended equipment: thermal shock test chamber JESD22-A110E-2015 HAST highly accelerated life test with bias According to JESD22-A110 specifications, both THB and BHAST are used to test components at high temperature and humidity, and the test process needs to be biased to accelerate the corrosion of components. The difference between BHAST and THB is that they can effectively shorten the test time required for the original THB test Recommended equipment: Highly accelerated life test chamber JESD22A113I plastic surface mount device prior to reliability testing For non-enclosed SMD parts, pre-treatment can simulate the reliability problems that may occur during the assembly of the circuit board due to the damage caused by packaging moisture, and identify potential defects in the reflow assembly of SMD and PCB through the test conditions of this specification. Recommended equipment: high and low temperature test chamber, hot and cold shock test chamber JESD22-A118B-2015 Unbiased high-speed accelerated life test To evaluate the resistance of non-airtight package components to moisture under non-biased conditions, confirm their moisture resistance, robustness and accelerated corrosion and aging, which can be used as a test similar to JESD22-A101 but at a higher temperature. This test is a highly accelerated life test using non-condensation temperature and humidity conditions. This test must be able to control the rising and cooling rate in the pressure cooker and the humidity during cooling Recommended equipment: Highly accelerated life test chamber JESD22-A119A-2015 Low temperature storage life test In the case of no bias, by simulating the low temperature environment to assess the ability of the product to withstand and resist low temperature for a long time, the test process does not apply bias, and the electrical test can be carried out after the test is returned to normal temperature Recommended equipment: high and low temperature test chamber JESD22-A122A-2016 Power cycle test Provides standards and methods for solid-state component package power cycle testing, through biased switching cycles that cause uneven temperature distribution inside the package (PCB, connector, radiator), and simulates standby sleep mode and full load operation, as well as life cycle testing for associated links in solid-state component packages, This test complements and augments the results of the JESD22-A104 or JESD22-A105 tests, which cannot simulate harsh environments such as engine rooms or aircraft and space shuttles. Recommended equipment: thermal shock test chamber JESD94B-2015 Application-Specific qualifications use knowledge-based testing methods Testing devices with correlated reliability testing techniques provides a scalable approach to other failure mechanisms and test environments, and life estimates using correlated life models Recommended equipment: high and low temperature test chamber, hot and cold shock test chamber, highly accelerated life test chamber  
    Read More
1 2 3 4 5 6 7 8 9 10
A total of10pages

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

contact us