Maintenance of refrigeration compressor for constant temperature and humidity test chamber, cold and hot shock test chamber
Article summary: For environmental monitoring equipment, the only way to maintain long-term and stable use is to pay attention to maintenance in all aspects. Here, we will introduce the maintenance of the compressor, which is an important component of the constant temperature and humidity test chamber and the cold and hot shock test chamber
Detailed content:
Maintenance plan for refrigeration compressor:
As the core component of the refrigeration system in the constant temperature and humidity test chamber, the maintenance of the compressor is essential. Guangdong Hongzhan Technology Co., Ltd. introduces the daily maintenance steps and precautions for the compressor in the constant temperature and humidity test chamber and the cold and hot shock test chamber
1、 Carefully check the sound of the cylinders and moving parts at all levels to determine if their working condition is normal. If any abnormal sound is found, immediately stop the machine for inspection;
2、 Pay attention to whether the indicated values of pressure gauges at all levels, pressure gauges on gas storage tanks and coolers, and lubricating oil pressure gauges are within the specified range;
3、 Check if the temperature and flow rate of the cooling water are normal;
4、 Check the supply of lubricating oil and the lubrication system of the moving mechanism (some compressors are equipped with organic glass baffles on the side of the cross head guide rail of the machine body),
You can directly see the movement of the crosshead and the supply of lubricating oil; The cylinder and packing can be inspected for oil discharge using a one-way valve, which can check if the oil injector is inserted into the cylinder
Oil injection situation;
5、 Observe whether the oil level in the body oil tank and the lubricating oil in the oil injector are below the scale line. If they are low, they should be refilled in a timely manner (if using a dipstick, stop and check);
6、 Check the temperature of the intake and exhaust valve covers at the cross guide rail of the crankcase with your hand to see if it is normal;
7、 Pay attention to the temperature rise of the motor, bearing temperature, and whether the readings on the voltmeter and ammeter are normal. The current should not exceed the rated current of the motor. If it exceeds the rated current, the cause should be identified or the machine should be stopped for inspection;
8、 Regularly check whether there are any debris or conductive objects inside the motor, whether the coil is damaged, and whether there is friction between the stator and rotor, otherwise the motor will burn out after starting;
9、 If it is a water-cooled compressor and water cannot be immediately supplied after the water is cut off, it is necessary to avoid cylinder cracking due to uneven heating and cooling. After parking in winter, the cooling water should be drained to prevent freezing and cracking of the cylinder and other parts;
10、 Check whether the compressor vibrates and whether the foundation screws are loose or detached;
11、 Check whether the pressure regulator or load regulator, safety valve, etc. are sensitive;
12、 Pay attention to the hygiene of the compressor, its associated equipment, and the environment;
13、 Gas storage tanks, coolers, and oil-water separators should regularly release oil and water;
14、 The lubricating machine used should be filtered by sedimentation. Differentiate the use of compressor oil between winter and summer
EC-105HTP,MTP,MTHP, High and low temperature constant temperature bath (1000L)
Project
Type
Series
HT
MT
MTH
function
Temperature occurs in a way
Dry wet bulb method
Temperature range
-20 ~ + 100 ℃
-40 ~ + 100 ℃
-40 ~ + 150 ℃
Range of temperature
Below the + 100℃
± 0.3 ℃
+Above the 101℃
―
± 0.5 ℃
Temperature distribution
Below the + 100℃
± 1.0 ℃
Above the + 101℃
―
± 2.0 ℃
The temperature drops the time
+20 ~ -20 ℃
Within 60 minutes
+20 ~ -40 ℃
Within 9 0 minutes
+20 ~ -40 ℃
Within 9 0 minutes
Temperature rise time
-20 ~ + 100 ℃
Within 45 minutes
-40 ~ + 100 ℃
Within 50 minutes
-40 ~ + 150 ℃
Within 75 minutes
The internal volume of the uterus was tested
1000L
Test room inch method (width, depth and height)
1000mm × 1000mm × 1000mm
Product inch method (width, depth and height)
1400mm × 1370mm × 1795mm
Make the material
External outfit
Test room control panel
machine room
Cold steel plate, cold steel plate beige
(Color table 2.5Y8 / 2)
Inside
Stainless steel plate (SUS304,2B polished)
Broken heat material
Test room
Hard synthetic resin
―
glass wool
door
Hard synthetic resin foam cotton, glass cotton
Project
Type
Series
HT
MT
MTH
Cooling dehumidifying device
Cooling-down method
Mechanical section shrinkage mode
Cooling medium
R404A
compressor
Output (number of units)
0.75kW (1)
1.5kW (1)
Cooling and dehumidifier
Multi-channel mixed heat sink type
The condenser
Multi-channel mixed radiator plate type (air cooling type)
Calorifier
Form
Nickel-chromium heat-resistant alloy heater
Volume
3.5kW
Blower
Form
Multi-channel mixed radiator plate type (air cooling type)
Motor capacity
40W
Controller
The temperature is set
-22.0 ~ + 102.0 ℃
-42.0 ~ + 102.0 ℃
-42.0 ~ + 152.0 ℃
Humidity is set
0 ~ 98%RH (But the temperature of the wet and dry bulb is 10-85 ℃ )
Time setting Fanny
0 ~ 999 Time 59 minutes (formula) 0 ~ 20000 Time 59 minutes (formula formula)
Set decomposition energy
Temperature 0.1℃, humidity 1% RH for 1 min
Indicate accuracy
Temperature ± 0.8℃ (tp.), humidity ± 1% RH (tp.), time ± 100 PPM
Vacation type
Value or program
Stage number
20-stage / 1 program
The number of procedures
The maximum number of incoming force (RAM) programs is 32 programs
The maximum number of internal ROM programs is 13 programs
Round-trip number
98 times maximum or unlimited
Number of round-trip repeats
Maximum 3 times
Displace the end
Pt 100Ω(at 0 ℃), gradeB(JIS C 1604-1997)
Control action
When splitting the PID action
Endovirus function
Early delivery function, standby function, setting value maintenance function, power outage protection function,
Power action selection function, maintenance function, transportation round-trip function,
Time delivery function, time signal output function, overrising and overcooling prevention function,
Abnormal representation function, external alarm output function, setting paradigm representation function,
Transport type selection function, the calculation time represents the function, the slot lamp lamp function
Project
Type
Series
HT
MT
MTH
Control panel
Equipment machine
LCD operating panel (type contact panel),
Represents lamp (power, transport, abnormal), test power supply terminal, external alarm terminal,
Time signal output terminal, power cord connector
Protective device
Refrigerating cycle
Overload protection device, high blocking device
Calorifier
Temperature over-rise protection device, temperature fuse
Blower
Overload protection device
Control panel
Leakage breaker for power supply, fuse (for heater, humidifier),
Fuse (for operating loop), temperature rise protection device (for testing),
Temperature rise overcooling prevention device (test material, in microcomputer)
Offproducts (sets)
House receiving (4), house board (2), operation instructions (1)
Equipment products
Adventitia
hard borosilicate glass 270mm× 190mm
2
Cable hole
内径 50mm
1
The trough inside the lamp
AC100V 15W White hot ball
2
Wheel
4
Horizontal adjustment
4
Electrovirus characteristics
Source *
AC three-phase 380V 50Hz
Maximum load current
13A
15A
Capacity of the leakage breaker for the power supply
25 A
Sensory current 30mA
Power distribution thickness
8mm2
14mm2
Rubber insulation hose
Coarseness of grounding wire
3.5mm2
5.5mm2
Tubing
drain-pipe *
PT1/2
Product weight
470kg
540kg
Conduction Zone of Heat
Thermal conductivity
It is the thermal conductivity of a substance, passing from high temperature to low temperature within the same substance. Also known as: thermal conductivity, thermal conductivity, thermal conductivity, heat transfer coefficient, heat transfer, thermal conductivity, thermal conductivity, thermal conductivity, thermal conductivity.
Thermal conductivity formula
k = (Q/t) *L/(A*T) k: thermal conductivity, Q: heat, t: time, L: length, A: area, T: temperature difference in SI units, the unit of thermal conductivity is W/(m*K), in imperial units, is Btu · ft/(h · ft2 · °F)
Heat transfer coefficient
In thermodynamics, mechanical engineering and chemical engineering, the heat conductivity is used to calculate the heat conduction, mainly the heat conduction of convection or the phase transformation between fluid and solid, which is defined as the heat through the unit area per unit time under the unit temperature difference, called the heat conduction coefficient of the substance, if the thickness of the mass of L, the measurement value to be multiplied by L, The resulting value is the coefficient of thermal conductivity, usually denoted as k.
Unit conversion of heat conduction coefficient
1 (CAL) = 4.186 (j), 1 (CAL/s) = 4.186 (j/s) = 4.186 (W).
The impact of high temperature on electronic products:
The rise in temperature will cause the resistance value of the resistor to decrease, but also shorten the service life of the capacitor, in addition, the high temperature will cause the transformer, the performance of the related insulation materials to decrease, the temperature is too high will also cause the solder joint alloy structure on the PCB board to change: IMC thickens, solder joints become brittle, tin whisker increases, mechanical strength decreases, junction temperature increases, the current amplification ratio of transistor increases rapidly, resulting in collector current increases, junction temperature further increases, and finally component failure.
Explanation of proper terms:
Junction Temperature: The actual temperature of a semiconductor in an electronic device. In operation, it is usually higher than the Case Temperature of the package, and the temperature difference is equal to the heat flow multiplied by the thermal resistance. Free convection (natural convection) : Radiation (radiation) : Forced Air(gas cooling) : Forced Liquid (gas cooling) : Liquid Evaporation: Surface Surroundings Surroundings
Common simple considerations for thermal design:
1 Simple and reliable cooling methods such as heat conduction, natural convection and radiation should be used to reduce costs and failures.
2 Shorten the heat transfer path as much as possible, and increase the heat exchange area.
3 When installing components, the influence of radiation heat exchange of peripheral components should be fully considered, and the thermal sensitive devices should be kept away from the heat source or find a way to use the protective measures of the heat shield to isolate the components from the heat source.
4 There should be sufficient distance between the air inlet and the exhaust port to avoid hot air reflux.
5 The temperature difference between the incoming air and the outgoing air should be less than 14 ° C.
6 It should be noted that the direction of forced ventilation and natural ventilation should be consistent as far as possible.
7 Devices with large heat should be installed as close as possible to the surface that is easy to dissipate heat (such as the inner surface of the metal casing, metal base and metal bracket, etc.), and there is good contact heat conduction between the surface.
8 Power supply part of the high-power tube and rectifier bridge pile belong to the heating device, it is best to install directly on the housing to increase the heat dissipation area. In the layout of the printed board, more copper layers should be left on the board surface around the larger power transistor to improve the heat dissipation capacity of the bottom plate.
9 When using free convection, avoid using heat sinks that are too dense.
10 The thermal design should be considered to ensure that the current carrying capacity of the wire, the diameter of the selected wire must be suitable for the conduction of the current, without causing more than the allowable temperature rise and pressure drop.
11 If the heat distribution is uniform, the spacing of the components should be uniform to make the wind flow evenly through each heat source.
12 When using forced convection cooling (fans), place the temperature-sensitive components closest to the air intake.
13 The use of free convection cooling equipment to avoid arranging other parts above the high power consumption parts, the correct approach should be uneven horizontal arrangement.
14 If the heat distribution is not uniform, the components should be sparsely arranged in the area with large heat generation, and the component layout in the area with small heat generation should be slightly denser, or add a diversion bar, so that the wind energy can effectively flow to the key heating devices.
15 The structural design principle of the air inlet: on the one hand, try to minimize its resistance to the air flow, on the other hand, consider dust prevention, and comprehensively consider the impact of the two.
16 Power consumption components should be spaced as far apart as possible.
17 Avoid crowding temperature sensitive parts together or arranging them next to high power consuming parts or hot spots.
18 The use of free convection cooling equipment to avoid arranging other parts above the high power consumption parts, the correct practice should be uneven horizontal arrangement.
Temperature Cyclic Stress Screening (1)
Environmental Stress Screening (ESS)
Stress screening is the use of acceleration techniques and environmental stress under the design strength limit, such as: burn in, temperature cycling, random vibration, power cycle... By accelerating the stress, the potential defects in the product emerge [potential parts material defects, design defects, process defects, process defects], and eliminate electronic or mechanical residual stress, as well as eliminate stray capacitors between multi-layer circuit boards, the early death stage of the product in the bath curve is removed and repaired in advance, so that the product through moderate screening, Save the normal period and decline period of the bathtub curve to avoid the product in the process of use, the test of environmental stress sometimes lead to failure, resulting in unnecessary losses. Although the use of ESS stress screening will increase the cost and time, for improving the product delivery yield and reduce the number of repairs, there is a significant effect, but for the total cost will be reduced. In addition, customer trust will also be improved, generally for electronic parts of the stress screening methods are pre-burning, temperature cycle, high temperature, low temperature, PCB printed circuit board stress screening method is temperature cycle, for the electronic cost of the stress screening is: Power pre-burning, temperature cycling, random vibration, in addition to the stress screen itself is a process stage, rather than a test, screening is 100% of the product procedure.
Stress screening applicable product stage: R & D stage, mass production stage, before delivery (screening test can be carried out in components, devices, connectors and other products or the whole machine system, according to different requirements can have different screening stress)
Stress screening comparison:
a. Constant high temperature pre-burning (Burn in) stress screening, is the current electronic IT industry commonly used method to precipitate electronic components defects, but this method is not suitable for screening parts (PCB, IC, resistor, capacitor), According to statistics, the number of companies in the United States that use temperature cycling to screen parts is five times more than the number of companies that use constant high temperature prefiring to screen components.
B. GJB/DZ34 indicates the proportion of temperature cycle and random vibrating screen selection defects, temperature accounted for about 80%, vibration accounted for about 20% of the defects in various products.
c. The United States has conducted a survey of 42 enterprises, random vibration stress can screen out 15 to 25% of the defects, while the temperature cycle can screen out 75 to 85%, if the combination of the two can reach 90%.
d. The proportion of product defect types detected by temperature cycling: insufficient design margin: 5%, production and workmanship errors: 33%, defective parts: 62%
Description of fault induction of temperature cyclic stress screening:
The cause of product failure induced by temperature cycling is: when the temperature is cycled within the upper and lower extremal temperatures, the product produces alternating expansion and contraction, resulting in thermal stress and strain in the product. If there is a transient thermal ladder (temperature non-uniformity) within the product, or the thermal expansion coefficients of adjacent materials within the product do not match each other, these thermal stresses and strains will be more drastic. This stress and strain is greatest at the defect, and this cycle causes the defect to grow so large that it can eventually cause structural failure and generate electrical failure. For example, a cracked electroplated through-hole eventually cracks completely around it, causing an open circuit. Thermal cycling enables soldering and plating through holes on printed circuit boards... Temperature cyclic stress screening is especially suitable for electronic products with printed circuit board structure.
The fault mode triggered by the temperature cycle or the impact on the product is as follows:
a. The expansion of various microscopic cracks in the coating, material or wire
b. Loosen poorly bonded joints
c. Loosen improperly connected or riveted joints
d. Relax the pressed fittings with insufficient mechanical tension
e. Increase the contact resistance of poor quality solder joints or cause an open circuit
f. Particle, chemical pollution
g. Seal failure
h. Packaging issues, such as bonding of protective coatings
i. Short circuit or open circuit of the transformer and coil
j. The potentiometer is defective
k. Poor connection of welding and welding points
l. Cold welding contact
m. Multi-layer board due to improper handling of open circuit, short circuit
n. Short circuit of power transistor
o. Capacitor, transistor bad
p. Dual row integrated circuit failure
q. A box or cable that is nearly short-circuited due to damage or improper assembly
r. Breakage, breakage, scoring of material due to improper handling... Etc.
s. out-of-tolerance parts and materials
t. resistor ruptured due to lack of synthetic rubber buffer coating
u. The transistor hair is involved in the grounding of the metal strip
v. Mica insulation gasket rupture, resulting in short circuit transistor
w. Improper fixing of the metal plate of the regulating coil leads to irregular output
x. The bipolar vacuum tube is open internally at low temperature
y. Coil indirect short circuit
z. Ungrounded terminals
a1. Component parameter drift
a2. Components are improperly installed
a3. Misused components
a4. Seal failure
Introduction of stress parameters for temperature cyclic stress screening:
The stress parameters of temperature cyclic stress screening mainly include the following: high and low temperature extremum range, dwell time, temperature variability, cycle number
High and low temperature extremal range: the larger the range of high and low temperature extremal, the fewer cycles required, the lower the cost, but can not exceed the product can withstand the limit, do not cause new fault principle, the difference between the upper and lower limits of temperature change is not less than 88°C, the typical range of change is -54°C to 55°C.
Dwell time: In addition, the dwell time can not be too short, otherwise it is too late to make the product under test produce thermal expansion and contraction stress changes, as for the dwell time, the dwell time of different products is different, you can refer to the relevant specification requirements.
Number of cycles: As for the number of cycles of temperature cyclic stress screening, it is also determined by considering product characteristics, complexity, upper and lower limits of temperature and screening rate, and the screening number should not be exceeded, otherwise it will cause unnecessary harm to the product and cannot improve the screening rate. The number of temperature cycles ranges from 1 to 10 cycles [ordinary screening, primary screening] to 20 to 60 cycles [precision screening, secondary screening], for the removal of the most likely workmanship defects, about 6 to 10 cycles can be effectively removed, in addition to the effectiveness of the temperature cycle, Mainly depends on the temperature variation of the product surface, rather than the temperature variation inside the test box.
There are seven main influencing parameters of temperature cycle:
(1) Temperature Range
(2) Number of Cycles
(3) Temperature Rate of Chang
(4) Dwell Time
(5) Airflow Velocities
(6) Uniformity of Stress
(7) Function test or not (Product Operating Condition)
Temperature Cyclic Stress Screening (2)
Introduction of stress parameters for temperature cyclic stress screening:
The stress parameters of temperature cyclic stress screening mainly include the following: high and low temperature extremum range, dwell time, temperature variability, cycle number
High and low temperature extremal range: the larger the range of high and low temperature extremal, the fewer cycles required, the lower the cost, but can not exceed the product can withstand the limit, do not cause new fault principle, the difference between the upper and lower limits of temperature change is not less than 88°C, the typical range of change is -54°C to 55°C.
Dwell time: In addition, the dwell time can not be too short, otherwise it is too late to make the product under test produce thermal expansion and contraction stress changes, as for the dwell time, the dwell time of different products is different, you can refer to the relevant specification requirements.
Number of cycles: As for the number of cycles of temperature cyclic stress screening, it is also determined by considering product characteristics, complexity, upper and lower limits of temperature and screening rate, and the screening number should not be exceeded, otherwise it will cause unnecessary harm to the product and cannot improve the screening rate. The number of temperature cycles ranges from 1 to 10 cycles [ordinary screening, primary screening] to 20 to 60 cycles [precision screening, secondary screening], for the removal of the most likely workmanship defects, about 6 to 10 cycles can be effectively removed, in addition to the effectiveness of the temperature cycle, Mainly depends on the temperature variation of the product surface, rather than the temperature variation inside the test box.
There are seven main influencing parameters of temperature cycle:
(1) Temperature Range
(2) Number of Cycles
(3) Temperature Rate of Chang
(4) Dwell Time
(5) Airflow Velocities
(6) Uniformity of Stress
(7) Function test or not (Product Operating Condition)
Stress screening fatigue classification:
The general classification of Fatigue research can be divided into High-cycle Fatigue, Low-cycle Fatigue and Fatigue Crack Growth. In the aspect of low cycle Fatigue, it can be subdivided into Thermal Fatigue and Isothermal Fatigue.
Stress screening acronyms:
ESS: Environmental stress screening
FBT: Function board tester
ICA: Circuit analyzer
ICT: Circuit tester
LBS: load board short-circuit tester
MTBF: mean time between failures
Time of temperature cycles:
a.MIL-STD-2164(GJB 1302-90) : In the defect removal test, the number of temperature cycles is 10, 12 times, and in the trouble-free detection it is 10 ~ 20 times or 12 ~ 24 times. In order to remove the most likely workmanship defects, about 6 ~ 10 cycles are needed to effectively remove them. 1 ~ 10 cycles [general screening, primary screening], 20 ~ 60 cycles [precision screening, secondary screening].
B.od-hdbk-344 (GJB/DZ34) Initial screening equipment and unit level uses 10 to 20 loops (usually ≧10), component level uses 20 to 40 loops (usually ≧25).
Temperature variability:
a.MIL-STD-2164(GJB1032) clearly states: [Temperature change rate of temperature cycle 5℃/min]
B.od-hdbk-344 (GJB/DZ34) Component level 15 ° C /min, system 5 ° C /min
c. Temperature cyclic stress screening is generally not specified temperature variability, and its commonly used degree variation rate is usually 5°C/min
EC-35EXT, Superior constant temperature bath (306L)
Project
Type
Series
EXT
Function
Temperature occurs in a way
Dry wet bulb method
Temperature range
-70 ~ +150 ℃
Range of temperature
Below the + 100℃
±0.3 ℃
Above the + 101℃
±0.5 ℃
Temperature distribution
Below the + 100℃
±0. 7 ℃
Above the + 101℃
±1.0 ℃
The temperature drops the time
+125 ~-55 ℃
Within 18 points (10℃ / point average temperature change)
Temperature rise time
-55 ~+125 ℃
Within 18 minutes (10℃ / minute)
The internal volume of the uterus was tested
306L
Test room inch method (width, depth and height)
630mm × 540mm × 900mm
Product inch method (width, depth and height)
1100mm × 1960mm × 1900mm
Make the material
External outfit
Test room control panel
machine room
Cold interductile steel plate is dark gray
Inside
Stainless steel plate (SUS304,2B polished)
Broken heat material
Test room
Hard synthetic resin
door
Hard synthetic resin foam cotton, glass cotton
Project
Type
Series
EXT
Cooling dehumidifying device
Cooling-down method
Mechanical section shrinkage and freezing mode and binary freezing mode
Cooling medium;coolant
Single segment side
R 404A
Binary high temperature / low temperature side
R 404A / R23
Cooling and dehumidifier
Multi-channel mixed heat sink type
The condenser
(water-cooled)
Calorifier
Form
Nickel-chromium heat-resistant alloy heater
Blower
Form
Stir fan
Controller
The temperature is set
-72.0 ~ + 152.0 ℃
Time setting Fanny
0 ~ 999 Time 59 minutes (formula) 0 ~ 20000 Time 59 minutes (formula formula)
Set decomposition energy
Temperature was 0.1℃ for 1 min
Indicate accuracy
Temperature ± 0.8℃ (typ.), time ± 100 PPM
Vacation type
Value or program
Stage number
20-stage / 1 program
The number of procedures
The maximum number of incoming force (RAM) programs is 32 programs
The maximum number of internal ROM programs is 13 programs式
Round-trip number
Max. 98, or unlimited
Number of round-trip repeats
Maximum 3 times
Displace the end
Pt 100Ω ( at 0 ℃ ),grade ( JIS C 1604-1997 )
Control action
When splitting the PID action
Endovirus function
Early delivery function, standby function, setting value maintenance function, power outage protection function,
Power action selection function, maintenance function, transportation round-trip function,
Time delivery function, time signal output function, overrising and overcooling prevention function,
Abnormal representation function, external alarm output function, setting paradigm representation function,
Transport type selection function, the calculation time represents the function, the slot lamp lamp function
Project
Type
Series
EXH
Control panel
Equipment machine
LCD operating panel (type contact panel),
Represents lamp (power, transport, abnormal), test power supply terminal, external alarm terminal,
Time signal output terminal, power cord connector
Protective device
Refrigerating cycle
Overload protection device, high blocking device
Calorifier
Temperature over-rise protection device, temperature fuse
Blower
Overload protection device
Control panel
Leakage breaker for power supply, fuse (heater,),
Fuse (for operating loop), temperature rise protection device (for testing),
Temperature rise overcooling prevention device (test material, in microcomputer)
Pay belongs to the product
Test material shed shed by * 8
Stainless steel Shshed (2), shed (4)
Fuse
Operating loop Protection Fuses (2)
Operating specification
( 1 )
Else
Bolus (Cable hole: 1)
Equipment products
Adventitia
Heat-resistant glass: 270mm: 190mm
1
Cable hole
Inner diameter of 50mm
1
The trough inside the lamp
AC100V 15W White hot ball
1
Wheel
6
Horizontal adjustment
6
Electrovirus characteristics
Power supply is * 5.1
AC Three-phase 380V 50Hz
Maximum load current
60A
Capacity of the leakage breaker for the power supply
80A
Sensory current 30mA
Power distribution thickness
60mm2
Rubber insulation hose
Coarseness of grounding wire
14mm2
Cooling water at * 5.3
Water yield
5000 L /h (When the cooling water inlet temperature is 32℃)
water pressure
0.1 ~ 0.5MPa
Side pipe diameter of the device
PT1 1/4
Tubing
Drain-pipe * 5.4
PT1/2
Product weight
700kg
IEC-60068-2 Combined Test of Condensation and Temperature and Humidity
Difference of IEC60068-2 damp heat test specifications
In the IEC60068-2 specification, there are a total of five kinds of humid heat tests, in addition to the common 85℃/85%R.H., 40℃/93%R.H. In addition to fixed-point high temperature and high humidity, there are two more special tests [IEC60068-2-30, IEC60068-2-38], these two are alternating wet and humid cycle and temperature and humidity combined cycle, so the test process will change temperature and humidity, and even multiple groups of program links and cycles, applied in IC semiconductors, parts, equipment, etc. To simulate the outdoor condensation phenomenon, evaluate the material's ability to prevent water and gas diffusion, and accelerate the product's tolerance to deterioration, the five specifications were organized into a comparison table of the differences in the wet and heat test specifications, and the test points were explained in detail for the wet and heat combined cycle test, and the test conditions and points of GJB in the wet and heat test were supplemented.
IEC60068-2-30 alternating humid heat cycle test
This test uses the test technique of maintaining humidity and temperature alternating to make moisture penetrate into the sample and cause condensation (condensation) on the surface of the product to be tested, so as to confirm the adaptability of the component, equipment or other products in use, transportation and storage under the combination of high humidity and temperature and humidity cyclic changes. This specification is also suitable for large test samples. If the equipment and the test process need to keep the power heating components for this test, the effect will be better than IEC60068-2-38, the high temperature used in this test has two (40 ° C, 55 ° C), the 40 ° C is to meet most of the world's high temperature environment, while 55 ° C meets all the world's high temperature environment, the test conditions are also divided into [cycle 1, cycle 2], In terms of severity, [Cycle 1] is higher than [Cycle 2].
Suitable for side products: components, equipment, various types of products to be tested
Test environment: the combination of high humidity and temperature cyclic changes produces condensation, and three kinds of environments can be tested [use, storage, transportation ([packaging is optional)]
Test stress: Breathing causes water vapor to invade
Whether power is available: Yes
Not suitable for: parts that are too light and too small
Test process and post-test inspection and observation: check the electrical changes after moisture [do not take out the intermediate inspection]
Test conditions: Humidity: 95%R.H.[Temperature change after high humidity maintenance](low temperature 25±3℃←→ high temperature 40℃ or 55℃)
Rising and cooling rate: heating (0.14℃/min), cooling (0.08 ~ 0.16℃/min)
Cycle 1: Where absorption and respiratory effects are important features, the test sample is more complex [humidity not less than 90%R.H.]
Cycle 2: In the case of less obvious absorption and respiratory effects, the test sample is simpler [humidity is not less than 80%R.H.]
IEC60068-2 damp heat test specification difference comparison table
For component type parts products, a combination test method is used to accelerate the confirmation of the test sample's resistance to degradation under high temperature, high humidity and low temperature conditions. This test method is different from the product defects caused by respiration [dew, moisture absorption] of IEC60068-2-30. The severity of this test is higher than that of other humid heat cycle tests, because there are more temperature changes and [respiration] during the test, the cycle temperature range is larger [from 55℃ to 65℃], and the temperature change rate of the temperature cycle is faster [temperature rise: 0.14 ° C /min becomes 0.38 ° C /min, 0.08 ° C /min becomes 1.16 ° C /min], in addition, different from the general humid heat cycle, the low temperature cycle condition of -10 ° C is added to accelerate the breathing rate and make the water condensed in the gap of the substitute freeze, which is the characteristic of this test specification. The test process allows the power test and the applied load power test, but it can not affect the test conditions (temperature and humidity fluctuation, rising and cooling rate) because of the heating of the side product after power. Due to the change of temperature and humidity during the test process, there can not be condensation water droplets on the top of the test chamber to the side product.
Suitable for side products: components, metal components sealing, lead end sealing
Test environment: combination of high temperature, high humidity and low temperature conditions
Test stress: accelerated breathing + frozen water
Whether it can be powered on: it can be powered on and external electric load (it can not affect the conditions of the test chamber because of power heating)
Not applicable: Can not replace moist heat and alternating humid heat, this test is used to produce defects different from respiration
Test process and post-test inspection and observation: check the electrical changes after moisture [check under high humidity conditions and take out after test]
Test conditions: damp heat cycle (25 please - 65 + 2 ℃ / 93 + / - 3% R.H.) please - low temperature cycle (25 please - 65 + 2 ℃ / 93 + 3% R.H. - - 10 + 2 ℃) X5cycle = 10 cycle
Rising and cooling rate: heating (0.38℃/min), cooling (1.16 ℃/min)
Heat and humidity cycle (25←→65±2℃/93±3%R.H.)
Low temperature cycle (25←→65±2℃/93±3%R.H. →-10±2℃)
GJB150-09 damp heat test
Instructions: The wet and heat test of GJB150-09 is to confirm the ability of equipment to withstand the influence of hot and humid atmosphere, suitable for equipment stored and used in hot and humid environments, equipment prone to high humidity, or equipment that may have potential problems related to heat and humidity. Hot and humid locations can occur throughout the year in the tropics, seasonally in mid-latitudes, and in equipment subjected to combined pressure, temperature and humidity changes, with special emphasis on 60 ° C /95%R.H. This high temperature and humidity does not occur in nature, nor does it simulate the dampness and heat effect after solar radiation, but it can find the parts of the equipment with potential problems, but it cannot reproduce the complex temperature and humidity environment, evaluate the long-term effect, and can not reproduce the humidity impact related to the low humidity environment.
Relevant equipment for condensation, wet freezing, wet heat combined cycle test: constant temperature and humidity test chamber
AEC-Q100- Failure Mechanism Based on Integrated Circuit Stress Test Certification
With the progress of automotive electronic technology, there are many complicated data management control systems in today's cars, and through many independent circuits, to transmit the required signals between each module, the system inside the car is like the "master-slave architecture" of the computer network, in the main control unit and each peripheral module, automotive electronic parts are divided into three categories. Including IC, discrete semiconductor, passive components three categories, in order to ensure that these automotive electronic components meet the highest standards of automotive anquan, the American Automotive Electronics Association (AEC, The Automotive Electronics Council is a set of standards [AEC-Q100] designed for active parts [microcontrollers and integrated circuits...] and [[AEC-Q200] designed for passive components, which specifies the product quality and reliability that must be achieved for passive parts. Aec-q100 is the vehicle reliability test standard formulated by the AEC organization, which is an important entry for 3C and IC manufacturers into the international auto factory module, and also an important technology to improve the reliability quality of Taiwan IC. In addition, the international auto factory has passed the anquan standard (ISO-26262). AEC-Q100 is the basic requirement to pass this standard.
List of automotive electronic parts required to pass AECQ-100:
Automotive disposable memory, Power Supply step-down regulator, Automotive photocoupler, three-axis accelerometer sensor, video jiema device, rectifier, ambient light sensor, non-volatile ferroelectric memory, power management IC, embedded flash memory, DC/DC regulator, Vehicle gauge network communication device, LCD driver IC, Single power Supply differential Amplifier, Capacitive proximity switch Off, high brightness LED driver, asynchronous switcher, 600V IC, GPS IC, ADAS Advanced Driver Assistance System Chip, GNSS Receiver, GNSS front-end amplifier... Let's wait.
AEC-Q100 Categories and Tests:
Description: AEC-Q100 specification 7 major categories a total of 41 tests
Group A- ACCELERATED ENVIRONMENT STRESS TESTS consists of 6 tests: PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSL
Group B- ACCELERATED LIFETIME SIMULATION TESTS consists of three tests: HTOL, ELFR, and EDR
PACKAGE ASSEMBLY INTEGRITY TESTS consists of 6 tests: WBS, WBP, SD, PD, SBS, LI
Group D- DIE FABRICATION RELIABILITY Test consists of 5 TESTS: EM, TDDB, HCI, NBTI, SM
The group ELECTRICAL VERIFICATION TESTS consist of 11 tests, including TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC and SER
Cluster F-Defect SCREENING TESTS: 11 tests, including: PAT, SBA
The CAVITY PACKAGE INTEGRITY TESTS consist of 8 tests, including: MS, VFV, CA, GFL, DROP, LT, DS, IWV
Short description of test items:
AC: Pressure cooker
CA: constant acceleration
CDM: electrostatic discharge charged device mode
CHAR: indicates the feature description
DROP: The package falls
DS: chip shear test
ED: Electrical distribution
EDR: non-failure-prone storage durability, data retention, working life
ELFR: Early life failure rate
EM: electromigration
EMC: Electromagnetic compatibility
FG: fault level
GFL: Coarse/fine air leakage test
GL: Gate leakage caused by thermoelectric effect
HBM: indicates the human mode of electrostatic discharge
HTSL: High temperature storage life
HTOL: High temperature working life
HCL: hot carrier injection effect
IWV: Internal hygroscopic test
LI: Pin integrity
LT: Cover plate torque test
LU: Latching effect
MM: indicates the mechanical mode of electrostatic discharge
MS: Mechanical shock
NBTI: rich bias temperature instability
PAT: Process average test
PC: Preprocessing
PD: physical size
PTC: power temperature cycle
SBA: Statistical yield analysis
SBS: tin ball shearing
SC: Short circuit feature
SD: weldability
SER: Soft error rate
SM: Stress migration
TC: temperature cycle
TDDB: Time through dielectric breakdown
TEST: Function parameters before and after stress test
TH: damp and heat without bias
THB, HAST: Temperature, humidity or high accelerated stress tests with applied bias
UHST: High acceleration stress test without bias
VFV: random vibration
WBS: welding wire cutting
WBP: welding wire tension
Temperature and humidity test conditions finishing:
THB(temperature and humidity with applied bias, according to JESD22 A101) : 85℃/85%R.H./1000h/bias
HAST(High Accelerated stress test according to JESD22 A110) : 130℃/85%R.H./96h/bias, 110℃/85%R.H./264h/bias
AC pressure cooker, according to JEDS22-A102:121 ℃/100%R.H./96h
UHST High acceleration stress test without bias, according to JEDS22-A118, equipment: HAST-S) : 110℃/85%R.H./264h
TH no bias damp heat, according to JEDS22-A101, equipment: THS) : 85℃/85%R.H./1000h
TC(temperature cycle, according to JEDS22-A104, equipment: TSK, TC) :
Level 0: -50℃←→150℃/2000cycles
Level 1: -50℃←→150℃/1000cycles
Level 2: -50℃←→150℃/500cycles
Level 3: -50℃←→125℃/500cycles
Level 4: -10℃←→105℃/500cycles
PTC(power temperature cycle, according to JEDS22-A105, equipment: TSK) :
Level 0: -40℃←→150℃/1000cycles
Level 1: -65℃←→125℃/1000cycles
Level 2 to 4: -65℃←→105℃/500cycles
HTSL(High temperature storage life, JEDS22-A103, device: OVEN) :
Plastic package parts: Grade 0:150 ℃/2000h
Grade 1:150 ℃/1000h
Grade 2 to 4:125 ℃/1000h or 150℃/5000h
Ceramic package parts: 200℃/72h
HTOL(High temperature working life, JEDS22-A108, equipment: OVEN) :
Grade 0:150 ℃/1000h
Class 1:150℃/408h or 125℃/1000h
Grade 2:125℃/408h or 105℃/1000h
Grade 3:105℃/408h or 85℃/1000h
Class 4:90℃/408h or 70℃/1000h
ELFR(Early Life failure Rate, AEC-Q100-008) : Devices that pass this stress test can be used for other stress tests, general data can be used, and tests before and after ELFR are performed under mild and high temperature conditions.
Temperature Cycling Test
Temperature Cycling, in order to simulate the temperature conditions encountered by different electronic components in the actual use environment, changing the ambient temperature difference range and rapid rise and fall temperature change can provide a more stringent test environment, but it must be noted that additional effects may be caused to material testing. For the relevant international standard test conditions of temperature cycle test, there are two ways to set the temperature change. Macroshow Technology provides an intuitive setting interface, which is convenient for users to set according to the specification. You can choose the total Ramp time or set the rise and cooling rate with the temperature change rate per minute.
List of international specifications for temperature cycling tests:
Total Ramp time (min) : JESD22-A104, MIL-STD-8831, CR200315
Temperature variation per minute (℃/min) : IEC 60749, IPC-9701, Bellcore-GR-468, MIL-2164
Example: Lead-free solder joint reliability test
Instructions: For the reliability test of lead-free solder joints, different test conditions will also be different in terms of the temperature change setting mode. For example, (JEDEC JESD22-A104) will specify the temperature change time with the total time [10min], while other conditions will specify the temperature change rate with [10℃/ min], such as from 100 ℃ to 0℃. With a temperature change of 10 degrees per minute, that is to say, the total temperature change time is 10 minutes.
100℃ [10min]←→0℃[10min], Ramp: 10℃/ min, 6500cycle
-40℃[5min]←→125℃ [5min], Ramp: 10min,
200cycle check once, 2000cycle tensile test [JEDEC JESD22-A104]
-40℃(15min)←→125℃(15min), Ramp: 15min, 2000cycle
Example: LED Automotive lighting (High Power LED)
The temperature cycle test condition of LED car lights is -40 ° C to 100 ° C for 30 minutes, the total temperature change time is 5 minutes, if converted into temperature change rate, it is 28 degrees per minute (28 ° C /min).
Test conditions: -40℃(30min)←→100℃(30min), Ramp: 5min
Reliability Environmental Test Equipment Combined with Multi-track Temperature Control and Detection Applications
Environmental test equipment includes constant temperature and humidity test chamber, hot and cold shock test chamber, temperature cycle test chamber, no wind oven... These test equipment are all in the simulated environment of temperature, humidity impact on the product, to find out the design, production, storage, transportation, use process may appear product defects, previously only simulated test area air temperature, but in the new international standards and the new test conditions of the international factory, the beginning of the requirements based on the air temperature is not. It is the surface temperature of the test product. In addition, the surface temperature should also be measured and recorded synchronously during the test process for post-test analysis. The relevant environmental test equipment should be combined with surface temperature control and the application of surface temperature measurement is summarized as follows.
Constant temperature and humidity test chamber test table temperature detection application:
Description: Constant temperature and humidity test chamber in the test process, combined with multi-track temperature detection, high temperature and humidity, condensation (condensation), combined temperature and humidity, slow temperature cycle... During the test process, the sensor is affixed to the surface of the test product, which can be used to measure the surface temperature or internal temperature of the test product. Through this multi-track temperature detection module, the set conditions, actual temperature and humidity, the surface temperature of the test product, and the same measurement and record can be integrated into a synchronous curve file for subsequent storage and analysis.
Thermal shock test chamber surface temperature control and detection applications: [dwell time based on surface temperature control], [temperature shock process surface temperature measurement record]
Description: The 8-rail temperature sensor is attached to the surface of the test product and applied to the temperature shock process. The dwell time can be counted backward according to the arrival of the surface temperature. During the impact process, the setting conditions, the test temperature, the surface temperature of the test product, and the same measurement and record can be integrated into a synchronous curve.
Temperature cycle test chamber surface temperature control and detection application: [Temperature cycle temperature variability and dwell time are controlled according to the test product surface temperature]
Description: Temperature cycle test is different from temperature shock test. Temperature shock test uses the maximum energy of the system to carry out temperature changes between high and low temperatures, and its temperature change rate is as high as 30 ~ 40℃ /min. Temperature cycle test requires a process of high and low temperature changes, and its temperature variability can be set and controlled. However, the new specification and the test conditions of international manufacturers have begun to require that the temperature variability refers to the surface temperature of the test product, not the air temperature, and the current temperature cycle specification temperature variability control. According to the test product surface specifications are [JEDEC-22A-104F, IEC60749-25, IPC9701, ISO16750, AEC-Q100, LV124, GMW3172]... In addition, the residence time of high and low temperatures can also be based on the test surface, rather than the air temperature.
Temperature cyclic stress screening test chamber surface temperature control and detection applications:
Instructions: Temperature cycle stress screening testing machine, combined with multi-rail temperature measurement, in the temperature variability of stress screening, you can choose to use [air temperature] or [test product surface temperature] to control the temperature variability, in addition, in the high and low temperature resident process, the time reciprocal can also be controlled according to the surface of the test product. In accordance with the relevant specifications (GJB1032, IEST) and the requirements of international organizations, according to the definition of GJB1032 in the stress screening residence time and temperature measurement point, 1. The number of thermocouples fixed on the product shall not be less than 3, and the temperature measurement point of the cooling system shall not be less than 6, 2. Ensure that the temperature of 2/3 thermocouples on the product is set at ±10℃, in addition, according to the requirements of IEST(International Association for Environmental Science and Technology), the residence time should reach the temperature stabilization time plus 5min or performance test time.
No air oven (natural convection test chamber) surface temperature detection application:
Description: Through the combination of a windless oven (natural convection test chamber) and a multi-track temperature detection module, the temperature environment without fan (natural convection) is generated, and the relevant temperature detection test is integrated. This solution can be applied to the actual ambient temperature test of electronic products (such as: Cloud server, 5G, electric vehicle interior, indoor without air conditioning environment, solar inverter, large LCD TV, home Internet sharer, office 3C, laptop, desktop, game console....... Etc.).
Purpose of Temperature Shock Test
Reliability environmental test In addition to high Temperature, low temperature, high temperature and high humidity, temperature and humidity combined cycle, temperature Shock (cold and hot Shock) is also a common test project, temperature shock Testing (Thermal Shock Testing, Temperature Shock Testing, referred to as: TST), the purpose of the temperature shock test is to find out the design and process defects of the product through the severe temperature changes that exceed the natural environment [temperature variability greater than 20℃/min, and even up to 30 ~ 40℃/min], but there is often a situation where the temperature cycle is confused with the temperature shock. "Temperature cycle" means that in the process of high and low temperature change, the temperature change rate is specified and controlled; The temperature change rate of "temperature shock" (hot and cold shock) is not specified (Ramp Time), mainly requires Recovery Time, according to the IEC specification, there are three kinds of temperature cycle test methods [Na, Nb, NC]. Thermal shock is one of the three [Na] test items [rapid temperature change with specified conversion time; medium: air], the main parameters of temperature shock (thermal shock) are: High temperature and low temperature conditions, residence time, return time, number of cycles, in high and low temperature conditions and residence time the current new specification will be based on the surface temperature of the test product, rather than the air temperature in the test area of the test equipment.
Thermal shock test chamber:
It is used to test the material structure or composite material, in an instant under the continuous environment of extremely high temperature and extremely low temperature, the degree of tolerance, so as to test the chemical changes or physical damage caused by thermal expansion and contraction in the shortest time, the applicable objects include metal, plastic, rubber, electronic.... Such materials can be used as the basis or reference for the improvement of its products.
The cold and thermal shock (temperature shock) test process can identify the following product defects:
Different expansion coefficient caused by the stripping of the joint
Water enters after cracking with different expansion coefficient
Accelerated test for corrosion and short circuit caused by water infiltration
According to the international standard IEC, the following conditions are common temperature changes:
1. When the equipment is transferred from a warm indoor environment to a cold outdoor environment, or vice versa
2. When the equipment is suddenly cooled by rain or cold water
3. Installed in the outside airborne equipment (such as: automobile, 5G, outdoor monitoring system, solar energy)
4. Under certain transport [car, ship, air] and storage conditions [non-air-conditioned warehouse]
Temperature impact can be divided into two types of two-box impact and three-box impact:
Instructions: Temperature impact is common [high temperature → low temperature, low temperature → high temperature] way, this way is also called [two-box impact], another so-called [three-box impact], the process is [high temperature → normal temperature → low temperature, low temperature → normal temperature → high temperature], inserted between the high temperature and low temperature, to avoid adding a buffer between the two extreme temperatures. If you look at the specifications and test conditions, there is usually a normal temperature condition, the high and low temperature will be extremely high and very low, in the military specifications and vehicle regulations will see that there is a normal temperature impact condition.
IEC temperature shock test conditions:
High temperature: 30, 40, 55, 70, 85, 100, 125, 155℃
Low temperature: 5, -5, -10, -25, -40, -55, -65℃
Residence time: 10min, 30min, 1hr, 2hr, 3hr(if not specified, 3hr)
Temperature shock residence time description:
The Dwell Time of temperature shock in addition to the requirements of the specification, some will depend on the weight of the test product and the surface temperature of the test product
The specifications of the thermal shock residence time according to weight are:
GJB360A-96-107, MIL-202F-107, EIAJ ED4701/100, JASO-D001... Let's wait.
The thermal shock residence time is based on the surface temperature control specifications: MIL-STD-883K, MIL-STD-202H(air above the test object)
MIL883K-2016 requirements for [temperature shock] specification:
1. After the air temperature reaches the set value, the surface of the test product needs to arrive within 16 minutes (residence time is not less than 10min).
2. High temperature and low temperature impact are more than the set value, but not more than 10℃.
Follow-up action of IEC temperature shock test
Reason: The IEC temperature test method is best considered as part of a series of tests, because some failures may not be immediately apparent after the test method is completed.
Follow-up test items:
IEC60068-2-17 Tightness test
IEC60068-2-6 Sinusoidal vibration
IEC60068-2-78 Steady Humid heat
IEC60068-2-30 Hot and humid temperature cycle
Tin whisker (whisker) temperature impact test conditions finishing:
1. - 55 (+ 0 / -) 10 ℃ please - 85 (+ / - 0) 10 ℃, 20 min / 1 cycle (500 cycle check again)
1000 cycles, 1500 cycles, 2000 cycles, 3000 cycles
2. 85(±5)℃←→-40(+5/-15)℃, 20min/1cycle, 500cycles
3.-35±5℃←→125±5℃, dwell for 7min, 500±4cycles
4. - 55 (+ 0 / -) 10 ℃ please - 80 (+ / - 0) 10 ℃, 7 min reside, 20 min / 1 cycle, 1000 cycles
Thermal shock testing machine product features:
Defrosting frequency: defrosting every 600cycles [Test condition: +150℃ ~ -55℃]
Load adjustment function: The system can automatically adjust according to the load of the product to be tested, without manual setting
High weight load: Before the equipment leaves the factory, use aluminum IC(7.5Kg) for load simulation to confirm that the equipment can meet the demand
Temperature shock Sensor location: The air outlet and return air outlet in the test area can be selected or both can be installed, which conforms to the MIL-STD test specification. In addition to meeting the requirements of the specification, it is also closer to the impact effect of the test product during the test, reducing the test uncertainty and distribution uniformity.
VMR- plate Temperature Cycle Transient Break Test
Temperature cycle test is one of the most commonly used methods for reliability and life test of lead-free welding materials and SMD parts. It evaluates the adhesive parts and solder joints on the surface of SMD, and causes plastic deformation and mechanical fatigue of solder joints materials under the fatigue effect of cold and hot temperature cycle with controlled temperature variability, so as to understand the potential hazards and failure factors of solder joints and SMD. The Daisy chain diagram is connected between the parts and the solder joints. The test process detects the on-off and on-off between the lines, parts and solder joints through the high-speed instantaneous break measuring system, which meets the demand for the reliability test of electrical connections to evaluate whether the solder joints, tin balls and parts fail. This test is not really simulated. Its purpose is to apply severe stress and accelerate the aging factor on the object to be tested to confirm whether the product is designed or manufactured correctly, and then evaluate the thermal fatigue life of the component solder joints. The reliability test of the electrical high-speed instantaneous break connection has become a key link to ensure the normal operation of the electronic system and avoid the failure of the electrical connection caused by the failure of the immature system. The resistance changes over a short period of time were observed under accelerated temperature changes and vibration tests.
Purpose:
1. Ensure that products designed, manufactured and assembled meet predetermined requirements
2. Relaxation of solder joint creep stress and SMD fracture failure caused by thermal expansion difference
3. The maximum test temperature of the temperature cycle should be 25℃ lower than the Tg temperature of the PCB material, so as to avoid more than one damage mechanism of the substitute test product
4. Temperature variability at 20℃/min is a temperature cycle, and temperature variability above 20℃/min is a temperature shock
5. The welding joint dynamic measurement interval does not exceed 1min
6. The high temperature and low temperature residence time for failure determination needs to be measured in 5 strokes
Requirements:
1. The total temperature time of the test product is within the range of the rated maximum temperature and the minimum temperature, and the length of the residence time is very important for the accelerated test, because the residence time is not enough during the accelerated test, which will make the creep process incomplete
2. The resident temperature must be higher than Tmax temperature and lower than Tmin temperature
Refer to the list of specifications:
IPC-9701, IPC650-2.6.26, IPC-SM-785, IPCD-279, J-STD-001, J-STD-002, J-STD-003, JESD22-A104, JESD22-B111, JESD22-B113, JESD22-B117 , SJR-01