banner
Home

Blog

Blog

  • Structural characteristics of temperature and humidity control box Structural characteristics of temperature and humidity control box
    Nov 18, 2014
    Structural characteristics of temperature and humidity control box The full name of the temperature and humidity control chamber is "Constant Temperature and Humidity Test Chamber", which is an essential testing equipment in aviation, automotive, home appliances, scientific research and other fields. It is used to test and determine the parameters and performance of electrical, electronic and other products and materials after high temperature, low temperature, humidity and heat or constant temperature environment changes. It can be mainly divided into "desktop" and "vertical" according to testing requirements and standards, with the difference being the temperature and humidity that can be achieved. The vertical type can be used for low temperature and drying below room temperature, while the desktop type can only be used for temperature and high humidity above room temperature. Suitable for various small electrical appliances, instruments, materials, and components for wet heat testing, it is also suitable for conducting aging tests. This test chamber adopts the most reasonable structure and stable and reliable control method currently available, making it aesthetically pleasing, easy to operate, safe, and with high precision in temperature and humidity control. It is an ideal equipment for conducting constant temperature and humidity tests. 1) The test box body is in the form of an integral structure, with the refrigeration system located at the lower rear of the box and the control system located at the upper part of the test box. (2) Inside the air duct interlayer at one end of the studio, there are devices such as heaters, refrigeration evaporators, and fan blades distributed; On the left side of the test box, there is a Ø 50 cable hole, and the test box is a single door (stainless steel embedded door handle) (3) The double-layer high temperature and anti-aging silicone rubber seal can effectively ensure the temperature loss of the test chamber   (4) There are observation windows, frost prevention devices, and switchable lighting fixtures on the box door. The observation window adopts multi-layer hollow tempered glass, and the inner adhesive sheet conductive film is heated and defrosted. The lighting fixtures use imported brand Philips lamps, which can effectively observe the experimental changes in the studio from all angles. Dear customer: Hello, our company is a high-quality development team with strong technical strength, providing high-quality products, complete solutions, and excellent technical services to our customers. The main products include walk-in constant temperature and humidity testing chambers, UV accelerated aging testing machines, rapid temperature change testing chambers, walk-in environmental testing chambers, UV aging testers, constant temperature and humidity chambers, etc. Our company adheres to the principle of building a business with integrity, maintaining quality, and striving for progress. With a more determined pace, we continuously climb new heights and contribute to the national automation industry. We welcome new and old customers to confidently choose the products they like. We will serve you wholeheartedly!
    Read More
  • Temperature control of solar simulation irradiation test chamber Temperature control of solar simulation irradiation test chamber
    Nov 18, 2014
    Temperature control of solar simulation irradiation test chamber The test chamber uses an artificial light source combined with a G7 OUTDOOR filter to adjust the system light source to meet the requirements of IEC61646 for solar simulators by simulating the radiation in natural sunlight. The above system light source is used to conduct the IEC61646 photoaging test on the solar cell module, and the temperature on the back of the module needs to be constantly controlled between 50 ± 10℃during the test. Can automatically monitor temperature; Configure a radiometer to control the irradiance of light, ensuring it remains stable at a specified level, while also controlling the testing time. During the ultraviolet light cycle period in the solar simulation irradiation test chamber, photochemical reactions are usually not sensitive to temperature. But the rate of any subsequent reaction depends on the temperature. The rate of these reactions accelerates with increasing temperature. Therefore, controlling the temperature during UV exposure is crucial. In addition, it is necessary to ensure that the temperature of the accelerated aging test is consistent with the highest temperature at which the material is directly exposed to sunlight. In the solar simulation irradiation test chamber, the UV exposure temperature can be set at any temperature between 50 ℃ and 80 ℃ based on the illuminance and ambient temperature. The UV exposure temperature is adjusted by a sensitive temperature controller and blower system to achieve excellent uniformity in the temperature of this test chamber. Dear customer: Hello, our company is a high-quality development team with strong technical strength, providing high-quality products, complete solutions, and excellent technical services to our customers. The main products include walk-in constant temperature and humidity testing chambers, UV accelerated aging testing machines, rapid temperature change testing chambers, walk-in environmental testing chambers, UV aging testers, constant temperature and humidity chambers, etc. Our company adheres to the principle of building a business with integrity, maintaining quality, and striving for progress. With a more determined pace, we continuously climb new heights and contribute to the national automation industry. We welcome new and old customers to confidently choose the products they like. We will serve you wholeheartedly!
    Read More
  • PCB Performs Accelerated Tests of Ion Migration and CAF Through HAST PCB Performs Accelerated Tests of Ion Migration and CAF Through HAST
    Oct 18, 2024
    PCB Performs Accelerated Tests of Ion Migration and CAF Through HAST PCB In order to ensure its long-term use quality and reliability, need to carry out SIR (Surface Insulation Resistance) surface insulation resistance test, through its test method to find out whether the PCB will occur MIG(ion migration) and CAF(glass fiber anode leakage) phenomenon, Ion migration is performed in a humidified state (e.g. 85℃/85%R.H.) with a constant bias (e.g. 50V), the ionized metal moves between the opposite electrodes (cathode to anode growth), the relative electrode is reduced to the original metal and precipitated dendritic metal phenomenon, often resulting in short circuit, ion migration is very fragile, the current generated at the moment of power will make the ion migration itself dissolves and disappears, MIG and CAF commonly used norms: IPC-TM-650-2.6.14., IPC-SF-G18, IPC-9691A, IPC-650-2.6.25, MIL-F-14256D, ISO 9455-17, JIS Z 3284, JIS Z 3197... But its test time is often 1000h, 2000h, for the cyclical products slow emergency, and HAST is a test method is also the name of the equipment, HAST is to improve environmental stress (temperature, humidity, pressure), in the unsaturated humidity environment (humidity: 85%R.H.) Speed up the test process to shorten the test time, used to assess PCB pressing, insulation resistance, and the moisture absorption effect of related materials, shorten the test time of high temperature and humidity (85℃/ 85%R.H. /1000h→110℃/ 85%R.H. /264h), the main reference specifications of PCB HAST test are: JESD22-A110-B, JCA-ET-01, JCA-ET-08. HAST Accelerated Life Mode: ★ Increase temperature (110℃, 120℃, 130℃) ★ Maintain high humidity (85%R.H.) Taken the pressure (110 ℃ / / 0.12 MPa, 120 ℃, 85% / 85% / 85% 0.17 MPa, 130 ℃ / / 0.23 MPa) ★ Extra bias (DC) HAST test conditions for PCB: 1. Jca-et-08:110, 120, 130 ℃/85%R.H. /5 ~ 100V 2. High TG epoxy multilayer board: 120℃/85%R.H./100V, 800 hours 3. Low inductance multilayer board: 110℃/85% R.H./50V/300h 4. Multi-layer PCB wiring, material: 120℃/85% R.H/100V/ 800h 5. Low expansion coefficient & low surface roughness halogen-free insulation material: 130℃/ 85% R.H/12V/240h 6. Optically active covering film: 130℃/ 85% R.H/6V/100h 7. Heat hardening plate for COF film: 120℃/ 85% R.H/100V/100h Lab Companion HAST High Acceleration Stress Test System (JESD22-A118/JESD22-A110) The HAST independently developed by Macro Technology fully owns independent intellectual property rights, and the performance indicators can fully benchmark foreign brands. It can provide single-layer and double-layer models and two series of UHAST BHAST. It solves the problem of long-term dependence on imports of this equipment, long delivery time of imported equipment (up to 6 months) and high price. High Accelerated Stress Testing (HAST) combines high temperature, high humidity, high pressure, and time to measure the reliability of components with or without electrical bias. HAST testing accelerates the stress of more traditional testing in a controlled way. It is essentially a corrosion failure test. Corrosion-type failure is accelerated, and defects such as packaging seals, materials and joints are detected in a relatively short time.    
    Read More
  • Reliability of Ceramic Substrate Reliability of Ceramic Substrate
    Oct 18, 2024
    Reliability of Ceramic Substrate Ceramic PCB (Ceramic Substrate) refers to a special process plate where copper foil is directly bonded to the surface (single or double) of alumina (Al2O3) or aluminum nitride (AlN) ceramic substrate at high temperature. The ultra-thin composite substrate has excellent electrical insulation performance, high thermal conductivity, excellent soldering and high adhesion strength, and can be etched into a variety of graphics like PCB board, with great current carrying capacity. Therefore, the ceramic substrate has become the basic material of high-power electronic circuit structure technology and interconnect technology, which is suitable for products with high caloric value (high-brightness LED, solar energy), and its excellent weather resistance can be applied to harsh outdoor environments. Main application products: high power LED carrier board, LED lights, LED street lights, solar inverter Ceramic substrate features: Structure: Excellent mechanical strength, low warping, thermal expansion coefficient close to silicon wafer (aluminum nitride), high hardness, good processability, high dimensional accuracy Climate: Suitable for high temperature and humidity environment, high thermal conductivity, good heat resistance, corrosion and wear resistance, UV& yellowing resistance Chemistry: Lead-free, non-toxic, good chemical stability Electrical: high insulation resistance, easy metallization, circuit graphics and strong adhesion Market: Abundant materials (clay, aluminum), easy to manufacture, low price PCB material thermal characteristics comparison (conductivity) : Glass fiber board (traditional PCB) : 0.5W/mK, aluminum substrate: 1~2.2W/mK, ceramic substrate: 24[alumina]~170[aluminum nitride]W/mK Material heat transfer coefficient (unit W/mK) : Resin: 0.5, alumina: 20-40, silicon carbide: 160, aluminum: 170, aluminum nitride: 220, copper: 380, diamond: 600 Ceramic substrate process classification: According to the line ceramic substrate process is divided into: thin film, thick film, low temperature co-fired multi-layer ceramic (LTCC) Thin Film Process (DPC) : Precise control of component circuit design (line width and film thickness) Thick film process (Thick film) : to provide heat dissipation and weather conditions Low temperature co-fired multilayer ceramic (HTCC) : The use of glass ceramics with low sintering temperature, low melting point, high conductivity of precious metal co-fired characteristics, multi-layer ceramic substrate) and assembly. Low temperature co-fired multilayer ceramics (LTCC) : Stack several ceramic substrates and embed passive components and other ics Thin film ceramic substrate process: · Pretreatment → sputtering → photoresistance coating → exposure development → line plating → film removal · Lamination → hot pressing → degreasing → substrate firing → circuit pattern formation → circuit firing · Lamination → surface printed circuit pattern → hot pressing → degreasing → co-firing · Printed circuit graphics → lamination → hot pressing → degreasing → co-firing Ceramic substrate reliability test conditions: Ceramic substrate high temperature operation: 85℃ Ceramic substrate low temperature operation: -40℃ Ceramic substrate cold and thermal shock: 1. 155℃(15min)←→-55℃(15min)/300cycle 2. 85 ℃ (30 min) please - - 40 ℃ (30 min)/RAMP: 10 min (12.5 ℃ / min) / 5 cycle Ceramic substrate adhesion: Stick to the surface of the board with 3M#600 tape. After 30 seconds, tear quickly in a 90° direction with the surface of the board. Ceramic substrate red ink experiment: Boil for one hour, impermeable Test equipment: 1.High and low temperature humid heat test chamber 2. Three-box gas type cold and heat shock test chamber  
    Read More
  • Factors causing uneven temperature inside the high and low temperature humid heat test chamber Factors causing uneven temperature inside the high and low temperature humid heat test chamber
    Nov 18, 2014
    Factors causing uneven temperature inside the high and low temperature humid heat test chamber The high and low temperature damp heat test chamber is the main equipment in temperature and humidity environment testing, mainly used for conducting high and low temperature and humidity tests to evaluate the temperature and humidity resistance of products, so as to ensure that our products can work and operate normally under any environmental conditions. However, if the temperature uniformity exceeds the allowable deviation range during environmental testing in the high and low temperature damp heat test chamber, the data obtained from the test is unreliable and cannot be used as the ultimate tolerance for high and low temperature testing of materials or products. So what are the reasons that can cause temperature uniformity to exceed the allowable deviation range? 1. The differences in the test objects in the high and low temperature humid heat test chamber: If enough test samples that affect the overall internal heat convection are placed in the high and low temperature test chamber, it will inevitably affect the uniformity of the internal temperature to a certain extent, that is, the temperature uniformity. For example, if LED lighting products are placed, the products themselves emit light and heat, becoming a thermal load, which has a significant impact on temperature uniformity. 2. The design issues make it difficult to achieve a uniform symmetrical structure in the internal structure and space of the high and low temperature wet heat test chamber, and an asymmetric structure will inevitably lead to deviations in the uniformity of internal temperature. This aspect is mainly reflected in sheet metal design and processing, such as the design of air ducts, the placement of heating pipes, and the size of fan power. All of these will affect the temperature uniformity inside the box. 3. Due to the different structures of the inner wall of the high and low temperature humid heat test chamber, the temperature of the inner wall of the test chamber will also be uneven, which will affect the heat convection inside the working chamber and cause deviation in the internal temperature uniformity. 4. Due to the different heat transfer coefficients on the front, back, left, right, top, and bottom surfaces of the box wall in the studio, some have threading holes, detection holes, testing holes, etc., which cause local heat dissipation and transfer, resulting in uneven temperature distribution of the box body and uneven radiative convective heat transfer on the box wall, affecting temperature uniformity. 5. The sealing of the box and door is not strict, for example, the sealing strip is not customized and has seams, and the door leaks air, which affects the temperature uniformity of the workspace. 6. If the volume of the test object is too large, or if the position or method of placing the test object in the high and low temperature damp heat test chamber is inappropriate, it will obstruct the air convection inside and also cause significant temperature uniformity deviation. Placing the test product next to the air duct seriously affects the circulation of air, and of course, the uniformity of temperature will be greatly affected. In summary, all of these points are the main culprits that affect the temperature uniformity inside the high and low temperature humid heat test chamber. We hope that everyone can investigate from these aspects one by one, which will surely solve your confusion and difficulties. Dear customer: Hello, our company is a high-quality development team with strong technical strength, providing high-quality products, complete solutions, and excellent technical services to our customers. The main products include walk-in constant temperature and humidity testing chambers, UV accelerated aging testing machines, rapid temperature change testing chambers, walk-in environmental testing chambers, UV aging testers, constant temperature and humidity chambers, etc. Our company adheres to the principle of building a business with integrity, maintaining quality, and striving for progress. With a more determined pace, we continuously climb new heights and contribute to the national automation industry. We welcome new and old customers to confidently choose the products they like. We will serve you wholeheartedly!
    Read More
  • How to handle situations encountered during testing in a programmable constant temperature and humidity test chamber How to handle situations encountered during testing in a programmable constant temperature and humidity test chamber
    Oct 17, 2014
    How to handle situations encountered during testing in a programmable constant temperature and humidity test chamber The handling of interruptions in programmable constant temperature and humidity test chambers is clearly defined in GJB 150, which considers three types of interruptions: interruptions within tolerance range, interruptions under under under test conditions, and interruptions under over test conditions. Different situations have different handling methods. For interruptions within the tolerance range, when the test conditions during the interruption period do not exceed the allowable error range, the interruption time should be considered as a part of the total test time; For the interruption of under test conditions, when the test conditions are below the lower limit of allowable error, the predetermined test conditions should be reached again from the point below the test conditions, and the test should be resumed until the predetermined test cycle is completed; Rework the test sample. If the test conditions do not directly affect the interruption of the test conditions, and if the test sample fails in future tests, the test result should be considered invalid. In practical work, we adopt the method of retesting after repairing the test sample for interruptions caused by faults in the test sample; For test interruptions caused by experimental equipment reasons (such as sudden water or power outages, equipment failures, etc.), if the interruption time is not very long (within 2 hours), we usually handle it according to the under test conditions specified in GJB 150. If the time is too long, the test must be redone. The reason for applying the regulation of interrupting the test in this way is determined by the regulation of stable temperature of the test sample. The determination of the duration at the test temperature in temperature testing is often based on the sample reaching temperature stability at that temperature. Due to differences in product structure, materials, and testing equipment capabilities, the time it takes for different products to reach temperature stability at the same temperature varies. When the surface of the test sample is heated (or cooled) and gradually transferred to the interior of the test sample. This thermal conduction process is a stable thermal conduction process, and there is a time delay when the internal temperature of the test sample reaches thermal equilibrium compared to the time when the surface of the test sample reaches thermal equilibrium. This time delay is the temperature stabilization time. For test samples that cannot measure temperature stability, the minimum required time is specified. That is, when not in operation and unable to measure, the minimum temperature stability time is 3 hours. When in operation, the minimum temperature stability time is 2 hours. In practical work, we use 2 hours as the temperature stability time. When the test sample reaches temperature stability, if the temperature around the test sample suddenly changes, there is a corresponding time delay for the test sample in thermal equilibrium, that is, in a short period of time, the temperature inside the test sample will not change too much. During the experiment, if there is a sudden water or power outage or equipment failure, we should first seal the test chamber door, because when the test equipment suddenly stops running, as long as the door is sealed, the temperature of the test chamber door will not change sharply. In a short period of time, the temperature inside the test sample will not change too much; Then, determine whether the interruption has affected the test sample. If it has not affected the test sample and the test equipment can resume normal operation in a short period of time, we can continue the test according to the under test condition interruption handling method specified in GJB 150, unless the interruption has caused some impact on the test sample. Dear customer: Hello, our company is a high-quality development team with strong technical strength, providing high-quality products, complete solutions, and excellent technical services to our customers. The main products include walk-in constant temperature and humidity testing chambers, UV accelerated aging testing machines, rapid temperature change testing chambers, walk-in environmental testing chambers, UV aging testers, constant temperature and humidity chambers, etc. Our company adheres to the principle of building a business with integrity, maintaining quality, and striving for progress. With a more determined pace, we continuously climb new heights and contribute to the national automation industry. We welcome new and old customers to confidently choose the products they like. We will serve you wholeheartedly!
    Read More
  • High and low temperature laboratory applications High and low temperature laboratory applications
    Nov 17, 2014
    High and low temperature laboratory applications Can determine whether the reliability and stability performance parameters of the product are qualified. Provide a basis for predicting and improving the quality and reliability of products. Structural characteristics of high and low temperature laboratory: The high and low temperature laboratory adopts imported advanced temperature and humidity control instruments with PID regulation, fast self-tuning, programmable control of cyclic testing, multiple parameter settings, digital display, and extremely convenient reading; The refrigeration system adopts an original imported high cooling capacity, high-efficiency maintenance free compressor. Adopting a binary cascade refrigeration method and imported environmentally friendly refrigerant, the cooling capacity is controlled by a servo control valve imported from the United States, saving about 30% energy (compared to our previous products). The warehouse plate unit combination structure adopts internal stainless steel and external special steel plate spray coating treatment. The internal size can be expanded arbitrarily, and it is easy to disassemble and assemble. It can be customized according to customer requirements to match the site design appearance. Cooperate with customer migration. A high-temperature resistant sealing strip is installed between the door and the shell of the walk-in constant temperature and humidity testing machine, effectively ensuring the sealing of the working room; It has the functions of system parameter monitoring and equipment fault protection diagnosis. When there is a fault, it is accompanied by an alarm sound to prompt the fault handling measures, and at the same time, it is recorded in the book, which facilitates maintenance personnel to understand the medical history of the equipment. Improve maintenance quality and equipment stability. Dear customer: Hello, our company is a high-quality development team with strong technical strength, providing high-quality products, complete solutions, and excellent technical services to our customers. The main products include walk-in constant temperature and humidity testing chambers, UV accelerated aging testing machines, rapid temperature change testing chambers, walk-in environmental testing chambers, UV aging testers, constant temperature and humidity chambers, etc. Our company adheres to the principle of building a business with integrity, maintaining quality, and striving for progress. With a more determined pace, we continuously climb new heights and contribute to the national automation industry. We welcome new and old customers to confidently choose the products they like. We will serve you wholeheartedly!
    Read More
  • The development prospects of high and low temperature wet heat test chambers are promising The development prospects of high and low temperature wet heat test chambers are promising
    Oct 17, 2014
    The development prospects of high and low temperature wet heat test chambers are promising Nowadays, China's environmental testing equipment industry is rapidly developing, constantly innovating and surpassing. However, compared to the international level, China has only reached the technical level of the mid-1990s. The development of modern industrial testing equipment not only depends on the level of product technology, but also involves engineering application technology. But many products in our country have already reached the level of international mainstream products, with a wide variety, complete specifications, low prices, and are very competitive in the international market; For example, the high and low temperature wet heat test chamber has reached the international product level. The high and low temperature damp heat test chamber in China has done very well both in terms of product reliability and product precision. Now the test chamber in China is becoming more and more intelligent and integrated into the Internet. As long as you have a computer, you can control it anywhere and anytime; And the price is relatively cheaper compared to foreign countries, with the same quality but different prices. However, it is still necessary to constantly innovate technological indicators, constantly surpass oneself, and become a leader in environmental testing equipment. From the current perspective, the development path of high and low temperature wet heat test chambers is bright. On the other hand, China's environmental testing equipment industry is accelerating from laboratories to the forefront of production, and to people's homes and lives. Portable, handheld, and personalized instruments are developing in large numbers, and commodity testing, environmental testing, and health testing have become new demand hotspots; The current trend in the development of instruments and meters is on the rise. It is believed that soon, China's leading product in the environmental testing industry, the high and low temperature wet heat test chamber, will be far ahead in terms of technology, brand, and other aspects internationally. Dear customer: Hello, our company is a high-quality development team with strong technical strength, providing high-quality products, complete solutions, and excellent technical services to our customers. The main products include walk-in constant temperature and humidity testing chambers, UV accelerated aging testing machines, rapid temperature change testing chambers, walk-in environmental testing chambers, UV aging testers, constant temperature and humidity chambers, etc. Our company adheres to the principle of building a business with integrity, maintaining quality, and striving for progress. With a more determined pace, we continuously climb new heights and contribute to the national automation industry. We welcome new and old customers to confidently choose the products they like. We will serve you wholeheartedly!
    Read More
  • UV accelerated aging testing machine with humid condensation environment and water spray system UV accelerated aging testing machine with humid condensation environment and water spray system
    Nov 17, 2014
    UV accelerated aging testing machine with humid condensation environment and water spray system In many outdoor environments, materials can be kept moist for up to 12 hours per day. Research has shown that the main factor causing outdoor humidity is dew, not rainwater. GUV simulates outdoor moisture erosion through its unique condensation function. In the condensation cycle during the experiment, the water in the reservoir at the bottom of the testing chamber is heated to generate hot steam, which fills the entire testing chamber. The hot steam maintains the relative humidity in the testing chamber at 100% and maintains a relatively high temperature. The sample is fixed on the side wall of the testing chamber, so that the testing surface of the sample is exposed to the ambient air inside the testing chamber. The outward side of the sample exposed to the natural environment has a cooling effect, resulting in a temperature difference between the inner and outer surfaces of the sample. The occurrence of this temperature difference causes the sample to always have liquid water generated by condensation on its testing surface throughout the entire condensation cycle. Due to outdoor exposure to moisture for up to ten hours a day, a typical condensation cycle typically lasts for several hours. GUV provides two methods for simulating humidity. The most commonly used method is condensation, which is the best way to simulate outdoor moisture erosion. All GUV models are capable of running condensation cycles. Because some application conditions also require the use of water spray to achieve practical results, some GUV models can operate both condensation cycle and water spray cycle. For certain applications, water spray can better simulate the environmental conditions of final use. Water spraying is very effective in simulating thermal shock or mechanical erosion caused by temperature fluctuations and rainwater erosion. Under certain practical application conditions, such as sunlight, when the accumulated heat rapidly dissipates due to sudden showers, the temperature of the material will undergo a sharp change, resulting in thermal shock, which is a test for many materials. GUV's water spray can simulate thermal shock and/or stress corrosion. The spray system has 12 nozzles, with 6 on each side of the testing room; The sprinkler system can run for a few minutes and then shut down. This short-term water spray can quickly cool the sample and create conditions for thermal shock. Dear customer: Hello, our company is a high-quality development team with strong technical strength, providing high-quality products, complete solutions, and excellent technical services to our customers. The main products include walk-in constant temperature and humidity testing chambers, UV accelerated aging testing machines, rapid temperature change testing chambers, walk-in environmental testing chambers, UV aging testers, constant temperature and humidity chambers, etc. Our company adheres to the principle of building a business with integrity, maintaining quality, and striving for progress. With a more determined pace, we continuously climb new heights and contribute to the national automation industry. We welcome new and old customers to confidently choose the products they like. We will serve you wholeheartedly!
    Read More
  • Tablet Reliability Test Tablet Reliability Test
    Oct 16, 2024
    Tablet Reliability Test A Tablet Computer, also known as a Tablet Personal Computer (Tablet PC), is a small, portable personal computer that uses a touch screen as its basic input device. It is an electronic product with strong mobility, and it can be seen everywhere in life (such as waiting stations, trains, high-speed trains, cafes, restaurants, meeting rooms, suburbs, etc.). People carry only simple coat protection or even no, in order to facilitate use, the design reduces the size, so that it can be directly placed in the pocket or handbag, backpack, but the tablet computer in the process of moving will also experience many environmental physical changes (such as temperature, humidity, vibration, impact, extrusion, etc.). Etc.) and natural damage (such as ultraviolet light, sunlight, dust, salt spray, water droplets... It will also cause artificial unintentional injury or abnormal operation and misoperation, and even cause failure and damage (such as: household chemicals, hand sweating, falling, terminal insertion and removal too much, pocket friction, crystal nails... These will shorten the life of the tablet computer, in order to ensure the reliability of the product and extend the service life to improve, we must carry out a number of environmental reliability test projects on the tablet computer, the following relevant tests for your reference. Environmental test project description: Simulate various harsh environments and reliability assessments used by tablet computers to test whether their performance meets the requirements; It mainly includes high and low temperature operation and high and low temperature storage, temperature and condensation, temperature cycle and shock, wet and heat combination test, ultraviolet, sunlight, drip, dust, salt spray and other tests. Operating temperature range: 0℃ ~ 35℃/5% ~ 95%RH Storage temperature range: -10℃ ~ 50℃/10% ~ 90%RH Operating low temperature test: -10℃/2h/ power operation Operating high temperature test: 40℃/8h/ all running Storage low temperature test: -20℃/96h/ shutdown Storage high temperature test: 60℃/96h/ shutdown High temperature test of vehicle storage: 85℃/96h/ shutdown Temperature shock: -40℃(30min)←→80℃(30min)/10cycle Wet heat test: 40℃/95%R.H./48h/ power standby Hot and humid cycle test: 40℃/95%R.H./1h→ramp:1℃/min→-10℃/1h, 20cycles, power standby Wet heat test: 40℃/95%R.H./48h/ power standby Hot and humid cycle test: 40℃/95%R.H./1h→ramp:1℃/min→-10℃/1h, 20cycles, power standby Weather resistance test: Simulation of the most severe natural conditions, solar thermal effect test, each cycle of 24 hours, 8 hours of continuous exposure, 16 hours to keep dark, each cycle radiation amount of 8.96 kWh/m2, a total of 10cycles. Salt spray test: 5% sodium chloride solution/Water temperature 35°C/PH 6.5~7.2/24h/ Shutdown → Pure water wipe shell →55°C/0.5h→ Function test: after 2 hours, after 40/80%R.H./168h. Dripping test: According to IEC60529, in line with IPX2 waterproof rating, can prevent water droplets falling at an Angle of less than 15 degrees from entering the tablet computer and causing damage. Test conditions: water flow rate 3mm/min, 2.5min at each position, checkpoint: after test, 24 hours later, standby for 1 week. Dust Test: According to IEC60529, in line with the IP5X dust class, can not completely prevent the entry of dust but does not affect the device should be the action and anquan, in addition to tablet computers are currently many personal mobile portable 3C products commonly used dust standards, such as: mobile phones, digital cameras, MP3, MP4... Let's wait. Conditions: Dust sample 110mm/3 ~ 8h/ test for dynamic operation After the test, a microscope is used to detect whether dust particles will enter the interior space of the tablet. Chemical staining test: Confirm the external components related to the tablet, confirm the chemical resistance of household chemicals, chemicals: sunscreen, lipstick, hand cream, mosquito repellent, cooking oil (salad oil, sunflower oil, olive oil... Etc.), the test time is 24 hours, check the color, gloss, surface smoothness... Etc., and confirm whether there are bubbles or cracks. Mechanical test: Test the strength of the mechanical structure of the tablet computer and the wear resistance of the key components; Mainly includes vibration test, drop test, impact test, plug test, and wear test... Etc. Fall test: The height of 130cm, free fall on the smooth soil surface, each side fell 7 times, 2 sides a total of 14 times, tablet computer in standby state, each fall, the function of the test product is checked. Repeated drop test: the height of 30cm, free drop on the smooth dense surface of 2cm thickness, each side fell 100 times, each interval of 2s, 7 sides a total of 700 times, every 20 times, check the function of the experimental product, tablet computer is in the state of power. Random vibration test: frequency 30 ~ 100Hz, 2G, axial: three axial. Time: 1 hour in each direction, for a total of three hours, the tablet is in standby mode. Screen impact resistance test: 11φ/5.5g copper ball fell on the center surface of 1m object at 1.8m height and 3ψ/9g stainless steel ball fell at 30cm height Screen writing durability: more than 100,000 words (width R0.8mm, pressure 250g) Screen touch durability: 1 million, 10 million, 160 million, 200 million times or more (width R8mm, hardness 60°, pressure 250g, 2 times per second) Screen flat press test: the diameter of the rubber block is 8mm, the pressure speed is 1.2mm/min, the vertical direction is 5kg force flat press the window 3 times, each time for 5 seconds, the screen should display normally. Screen front flat press test: The entire contact area, the direction of the vertical 25kg force front flat press each side of the tablet computer, for 10 seconds, flat press 3 times, there should be no abnormal. Earphone plug and remove test: Insert the earphone vertically into the earphone hole, and then pull it out vertically. Repeat this for more than 5000 times I/O plug and pull test: The tablet is in standby state, and the plug terminal connector is pulled out, a total of more than 5000 times Pocket friction test: Simulate various materials pocket or backpack, the tablet is repeatedly rubbed in the pocket 2,000 times (friction test will also add some mixed dust particles, including dust particles, yan grass particles, fluff and paper particles for mixing test). Screen hardness test: hardness greater than class 7 (ASTM D 3363, JIS 5400) Screen impact test: hit the most vulnerable sides and center of the panel with a force of more than 5㎏  
    Read More
  • Laptop Test Conditions Laptop Test Conditions
    Oct 16, 2024
    Laptop Test Conditions Notebook computer from the early 12-inch screen evolution to the current LED backlit screen, its computing efficiency and 3D processing, will not be lost to the general desktop computer, and the weight is becoming less and less burden, the relative reliability test requirements for the entire notebook computer is becoming more and more stringent, from the early packaging to the current boot down, the traditional high temperature and high humidity to the current condensation test. From the temperature and humidity range of the general environment to the desert test as a common condition, these are the parts that need to be considered in the production of notebook computer related components and design, the test conditions of the relevant environmental tests collected so far are organized and shared with you. Keyboard tapping test: Test one: GB:1 million times Key pressure :0.3~0.8(N) Button stroke :0.3~1.5(mm) Test 2: Key pressure: 75g(±10g) Test 10 keys for 14 days, 240 times per minute, a total of about 4.83 million times, once every 1 million times Japanese manufacturers :2 to 5 million times Taiwan manufacturer 1: more than 8 million times Taiwan Manufacturer 2:10 million times Power switch and connector plug pull test: This test model simulates the lateral forces that each connector can withstand under abnormal usage. General laptop test items: USB, 1394, PS2, RJ45, Modem, VGA... Equal application force 5kg(50 times), up and down left and right pull and plug. Power switch and connector plug test: 4000 times (Power supply) Screen cover opening and closing test: Taiwanese manufacturers: open and close 20,000 times Japanese manufacturer 1: opening and closing test 85,000 times Japanese manufacturer 2: opening and closing 30,000 times System standby and recovery switch test: General note type: interval 10sec, 1000cycles Japanese manufacturer: System standby and recovery switch test 2000 times Common causes of laptop failure: ☆ Foreign objects fall on the notebook ☆ Falls off the table while in use ☆ Tuck the notebook in a handbag or trolley case ☆ Extremely high temperature or low temperature ☆ Normal use (overuse) ☆ Wrong use in tourist destinations ☆PCMCIA inserted incorrectly ☆ Place foreign objects on the keyboard Shutdown drop test: General notebook type :76 cm GB package drop: 100cm Us Army and Japanese notebook computers: The height of the computer is 90 cm from all sides, sides, corners, a total of 26 sides Platform :74 cm (packing required) Land: 90cm (packing required) TOSHIBA&BENQ 100 cm Boot drop test: Japanese :10 cm boot fall Taiwan :74 cm boot fall Laptop main board temperature shock: Slope 20℃/min Number of cycles 50cycles(no operation during impact) The U.S. military's technical standards and test conditions for laptop procurement are as follows: Impact test: Drop the computer 26 times from all sides, sides and corners at a height of 90 cm Earthquake resistance test :20Hz~1000Hz, 1000Hz~2000Hz frequency once an hour X, Y and Z axis continuous vibration Temperature test :0℃~60℃ 72 hours of aging oven Waterproof test: Spray water on the computer for 10 minutes in all directions, and the water spray rate is 1mm per minute Dust test: Spray the concentration of 60,000 mg/ per cubic meter of dust for 2 seconds (interval of 10 minutes, 10 consecutive times, time 1 hour) Meets MIL-STD-810 military specifications Waterproof test: Us Army notebook :protection class:IP54(dust & rain) Sprayed the computer with water in all directions for 10 minutes at a rate of 1mm per minute. Dust proof test: Us Army notebook: Spray a concentration of 60,000 mg/ m3 of dust for 2 seconds (10 minute intervals, 10 consecutive times, time 1 hour)  
    Read More
  • Basic troubleshooting methods for high and low temperature test chambers Basic troubleshooting methods for high and low temperature test chambers
    Oct 16, 2024
    Basic troubleshooting methods for high and low temperature test chambers: 1、 High and low temperature testing equipment. In high temperature testing, if the temperature change does not reach the test temperature value, the electrical system can be checked and the faults can be eliminated one by one. If the temperature rises slowly, you need to check the air circulation system to see if the regulating baffle of the air circulation is open normally. Otherwise, check the motor of the air circulation Is the operation normal. If the temperature overshoot is severe, it is necessary to adjust the PID setting parameters. If the temperature rises directly and is protected against overheating, the controller will malfunction and the control instrument must be replaced. 2、 When the high and low temperature test equipment suddenly malfunctions during the test operation, the corresponding fault display prompt and audible alarm prompt will appear on the control instrument. The operator can quickly identify which type of fault it belongs to by referring to the troubleshooting chapter in the operation and use of the equipment, and then ask professional personnel to quickly troubleshoot it to ensure the normal progress of the experiment. Other environmental testing equipment may experience other phenomena during use, so it is necessary to analyze and eliminate them specifically. Regular maintenance and upkeep of environmental testing equipment, regular cleaning of the condenser in the refrigeration system, lubrication of moving parts according to the instructions, and regular maintenance and inspection of the electrical control system are essential tasks 3、 If the low temperature of the high and low temperature testing instrument cannot meet the test indicators, then you need to observe the temperature changes, whether the temperature drops very slowly or there is a trend of temperature recovery after reaching a certain value. The former needs to check whether the working chamber is dried before conducting the low temperature test, so that the working chamber can be kept dry before putting the test sample into the working chamber for further testing. If there are too many test samples placed in the working chamber, which prevent the air in the working chamber from fully circulating, after ruling out the above reasons, you need to consider whether it is a fault in the refrigeration system. In this case, you need to hire professional personnel from the Lab Companion manufacturer for maintenance. The latter phenomenon is caused by poor usage environment of the equipment. The temperature and location of the equipment placement (distance between the box and the wall) must meet the requirements (as specified in the equipment operation instructions). At present, the company's main products include: high and low temperature test chambers, rapid temperature change test chambers, constant temperature and humidity test chambers, and high and low temperature impact test chambers.
    Read More
1 2 7 8 9 10 11 12 13 14 15 16
A total of16pages

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

contact us